Skip to main content
Log in

Frequency analysis of smart sandwich cylindrical panels with nanocomposite core and piezoelectric face sheets

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An analysis is performed in this research to investigate the vibration response of sandwich cylindrical panels with piezoelectric layers. Core of the sandwich panel is made from a composite laminated media which is reinforced with graphene platelets. The amount of graphene in the layers may be different which results in a piecewise functionally graded media. Elasticity modulus of the core media is estimated via the Halpin–Tsai rule, while the mass density and Poisson’s ratio are obtained via the simple rule of mixtures approach. By means of the first-order shear deformation panel theory and linear variation of electric field for the smart layers as the basic assumptions, the expressions of the energies of the panel are obtained. With the general idea of the Ritz method whose shape functions are constructed via the Legendre polynomials, the matrix representation of motion equations is obtained. The obtained form of equations may be used for both closed and open circuit conditions of piezoelectric layers. Results of this study are first compared with the available data in the open literature for simple cases, and after that novel numerical results are given to explore the effects of graded patterns of GPLs, weight fraction of GPLs, mechanical and electrical boundary conditions, number of layers, and also geometrical parameters. It is highlighted that frequencies may be controlled via proper graded pattern and weight fraction of GPLs. Also open circuit type of electrical boundary conditions results in higher natural frequencies in comparison to closed circuit type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Golabchi, H., Kolahchi, R., Rabani Bidgoli, M.: Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects. Comput. Concr. 21(4), 431–440 (2018)

    Google Scholar 

  2. Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., Thomas, S.: Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132, 368–393 (2017)

    Google Scholar 

  3. Garcia, C., Trendafilova, I., Zucchelli, A.: The effect of polycaprolactone nanofibers on the dynamic and impact behavior of glass fibre reinforced polymer composites. J. Compos. Sci. 2(3), 43 (2018)

    Google Scholar 

  4. Mirzaei, M., Kiani, Y.: Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout. Beilstein J. Nanotechnol. 7, 511–523 (2016)

    Google Scholar 

  5. Mirzaei, M., Kiani, Y.: Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos. Struct. 142, 45–56 (2016)

    Google Scholar 

  6. Kiani, Y.: Free vibration of FG-CNT reinforced composite skew plates. Aerosp. Sci. Technol. 58, 178–188 (2016)

    Google Scholar 

  7. Zhang, L.W., Liew, K.M.: Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach. Compos. Struct. 132, 974–983 (2015)

    Google Scholar 

  8. Kumar, R., Kumar, A.: Free vibration response of cnt-reinforced multiscale functionally graded plates using the modified shear deformation theory. Adv. Mater. Process. Technol. 8(4), 4257–4279 (2022)

    Google Scholar 

  9. Biswas, S., Datta, P.: Finite element model for free vibration analyses of FG-CNT reinforced composite beams using refined shear deformation theories. IOP Conf. Ser. Mater. Sci. Eng. 1206, Article Number 012019 (2019)

  10. Truong-Thi, T., Vo-Duy, T., Ho-Huu, V., Nguyen-Thoi, T.: Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3. Int. J. Comput. Methods 17(3), 1850133 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Mirjavadi, S.S., Forsat, M., Barati, M.R., Hamouda, A.M.S.: Analysis of nonlinear vibrations of CNT-/fiberglass-reinforced multi-scale truncated conical shell segments. Mech. Based Des. Struct. Mach. 50(6), 2067–2083 (2022)

    Google Scholar 

  12. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric filed effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Google Scholar 

  13. Rafiee, M.A., Rafiee, J., Yu, Z.Z., Koratkar, N.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95, 223103 (2009)

    Google Scholar 

  14. Biswas, S., Fukushima, H., Drzal, L.T.: Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites. Compos. A Appl. Sci. Manuf. 42, 371–375 (2011)

    Google Scholar 

  15. Parashar, A., Mertiny, P.: Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite. Nanoscale Res. Lett. 7, 515 (2012)

    Google Scholar 

  16. Zhao, S., Zhao, Z., Yang, Z., Ke, L.L., Kitipornchai, S., Yang, J.: Functionally graded graphene reinforced composite structures: a review. Eng. Struct. 210, 110339 (2020)

    Google Scholar 

  17. Zhao, Z., Feng, C., Wang, Y., Yang, J.: Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Compos. Struct. 180, 799–808 (2017)

    Google Scholar 

  18. Song, M.T., Yang, J., Kitipornchai, S., Zhu, W.D.: Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int. J. Mech. Sci. 131–132, 345–355 (2017)

    Google Scholar 

  19. Wang, Y., Feng, C., Zhao, Z., Yang, J.: Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL). Compos. Struct. 202, 38–46 (2018)

    Google Scholar 

  20. Wu, H.L., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)

    Google Scholar 

  21. Wang, Y., Feng, C., Wang, X.W., Zhao, Z., Romero, C.S., Dong, Y.H., Yang, J.: Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity. Appl. Math. Model. 71, 298–315 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Ganapathi, M., Aditya, S., Shubhendu, S., Polit, O., Ben, Z.T.: Nonlinear supersonic flutter study of porous 2D curved panels including graphene platelets reinforcement effect using trigonometric shear deformable finite element. Int. J. Non-Linear Mech. 125, 103543 (2020)

    Google Scholar 

  23. Shen, H.S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)

    Google Scholar 

  24. Shen, H.S., Xiang, Y.: Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties. Meccanica 54, 283–297 (2019)

    MathSciNet  Google Scholar 

  25. Shen, H.S., Xiang, Y., Lin, F.: A novel technique for nonlinear dynamic instability analysis of FG-GRC laminated plates. Thin-Walled Struct. 139, 389–397 (2019)

    Google Scholar 

  26. Lin, F., Xiang, Y., Shen, H.S.: Nonlinear forced vibration of FG-GRC laminated plates resting on visco-Pasternak foundations. Compos. Struct. 209, 443–452 (2019)

    Google Scholar 

  27. Gholami, R., Ansari, R.: Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates. Eng. Struct. 156, 197–209 (2018)

    Google Scholar 

  28. Gholami, R., Ansari, R.: On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: a unified higher-order shear deformable model. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 603–620 (2019)

    Google Scholar 

  29. Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J., Xu, X.: Accurate nonlinear buckling analysis of functionally graded porousgraphene platelet reinforced composite cylindrical shells. Int. J. Mech. Sci. 151, 537–550 (2019)

    Google Scholar 

  30. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Google Scholar 

  31. Baghbadorani, A.A.M., Kiani, Y.: Vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets. Compos. Struct. 276, 114546 (2021)

    Google Scholar 

  32. Esmaeili, H.R., Kiani, Y., Tadi Beni, Y.: Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports. Acta Mech. 233(2), 1–19 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Esmaeili, H.R., Kiani, Y.: On the response of graphene platelet reinforced composite laminated plates subjected to instantaneous thermal shock. Eng. Anal. Bound. Elem. 141, 167–180 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Esmaeili, H.R., Kiani, Y.: Vibrations of graphene platelet reinforced composite doubly curved shells subjected to thermal shock. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2120499

    Article  MATH  Google Scholar 

  35. Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021)

    Google Scholar 

  36. Jalali, M.R., Shavalipour, A., Safarpour, M., Moayedi, H., Safarpour, H.: Frequency analysis of a graphene platelet–reinforced imperfect cylindrical panel covered with piezoelectric sensor and actuator. J. Strain Anal. Eng. Des. 55(5–6), 181–196 (2020)

    Google Scholar 

  37. Dong, Y., Li, Y., Li, X., Yang, J.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Lin, H.G., Cao, D.Q., Xu, Y.Q.: Vibration, buckling and aeroelastic analyses of functionally graded multilayer graphene-nanoplatelets-reinforced composite plates embedded in piezoelectric layers. Int. J. Appl. Mech. 10(3), 1850023 (2018)

    Google Scholar 

  39. Alibeigloo, A., Nouri, V.: Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method. Compos. Struct. 92(8), 1775–1785 (2010)

    Google Scholar 

  40. Bayat, A., Jalali, A., Ahmadi, H.: Nonlinear dynamic analysis and control of FG cylindrical shell fitted with piezoelectric layers. Int. J. Struct. Stab. Dyn. 21(06), 2150083 (2021)

    MathSciNet  Google Scholar 

  41. Yang, J., Sun, G., Fu, G.: Bifurcation and chaos of functionally graded carbon nanotube reinforced composite cylindrical shell with piezoelectric layer. Mech. Solids 56, 856–872 (2021)

    Google Scholar 

  42. Ebrahimi, Z.: Vibration and stability analysis of a functionally graded cylindrical shell embedded in piezoelectric layers conveying fluid flow. J. Vib. Control (2022). https://doi.org/10.1177/10775463221081184

    Article  Google Scholar 

  43. Rabab, A., Alghanmi, A., Zenkour, M.: An electromechanical model for functionally graded porous plates attached to piezoelectric layer based on hyperbolic shear and normal deformation theory. Compos. Struct. 274, 114352 (2021)

    Google Scholar 

  44. Markad, K.M., Das, V., Lal, A.: Deflection and stress analysis of piezoelectric laminated composite plate under variable polynomial transverse loading. AIP Adv. 12, 085024 (2022)

    Google Scholar 

  45. Lore, S., Deshpande, S., Nath Singh, B.: Nonlinear free vibration analysis of functionally graded plates and shell panels using quasi-3D higher order shear deformation theory. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2114050

    Article  Google Scholar 

  46. Li, X., Yu, K., Han, J., Zhao, R., Wu, Y.: A piecewise shear deformation theory for free vibration of composite and sandwich panels. Compos. Struct. 124, 111–119 (2015)

    Google Scholar 

  47. Shen, H.S., Wang, H.: Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments. Compos. B Eng. 60, 167–177 (2014)

    Google Scholar 

  48. Viola, E., Tornabene, F., Fantuzzi, N.: General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels. Compos. Struct. 95, 639–666 (2013)

    Google Scholar 

  49. Chen, Y., Ye, T., Jin, G., Lee, H.P., Ma, X.: A unified quasi-three-dimensional solution for vibration analysis of rotating pre-twisted laminated composite shell panels. Compos. Struct. 282, 115072 (2022)

    Google Scholar 

  50. Karami, B., Janghorban, M., Fahham, H.R.: Forced vibration analysis of anisotropic curved panels via a quasi-3D model in orthogonal curvilinear coordinate. Thin-Walled Struct. 175, 109254 (2022)

    Google Scholar 

  51. Karimiasl, M., Alibeigloo, A.: Nonlinear aeroelastic analysis of sandwich composite cylindrical panel with auxetic core subjected to the thermal environment. J. Vib. Control. 1, 2 (2022). https://doi.org/10.1177/10775463221094715

    Article  MATH  Google Scholar 

  52. Pourmoayed, A.R., Malekzadeh Fard, K., Shahravi, M.: Vibration analysis of a cylindrical sandwich panel with flexible core using an improved higher-order theory. Latin Am. J. Solids Struct. 14(4), 714–742 (2017)

    Google Scholar 

  53. Mohammadimehr, M., Okhravi, S., Akhavan Alavi, S.: Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. J. Vib. Control 24(8), 1551–1569 (2016)

    MathSciNet  Google Scholar 

  54. Keleshteri, M.M., Jelovica, J.: Analytical solution for vibration and buckling of cylindrical sandwich panels with improved FG metal foam core. Eng. Struct. 266, 114580 (2022)

    Google Scholar 

  55. Nazemizadeh, M., Bakhtiarinejad, F., Assadi, A., Shahriari, B.: Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory. Acta Mech. 231, 4259–4274 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Civalek, O., Uzun, B., Yayli, M.O.: An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput. Appl. Math. 41, 67 (2022)

    MathSciNet  MATH  Google Scholar 

  57. Abouelregal, A.E., Ersoy, H., Civalek, O.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9(13), 1536 (2021)

    Google Scholar 

  58. Akgöz, B., Civalek, O.: Buckling analysis of functionally graded tapered microbeams via Rayleigh–Ritz method. Mathematics 10(23), 4429 (2022)

    Google Scholar 

  59. Jalaei, M.H., Thai, H.T., Civalek, O.: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)

    MathSciNet  MATH  Google Scholar 

  60. Numanoglu, H.M., Ersoy, H., Akgöz, B., Civalek, O.: A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. 45, 2592–2614 (2022)

    MathSciNet  Google Scholar 

  61. Civalek, O., Dastjerdi, S., Akgoz, B.: Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mech. Based Des. Struct. Mach. 50(6), 1914–1931 (2022)

    Google Scholar 

  62. Sobhani, E., Arbabian, A., Civalek, O., Avkar, M.: The free vibration analysis of hybrid porous nanocomposite joined hemispherical-cylindrical-conical shells. Eng. Comput. 38(4), 3125–3152 (2022)

    Google Scholar 

  63. Fan, T.: An energy harvester with nanoporous piezoelectric double-beam structure. Acta Mech. 233, 1083–1098 (2022)

    MathSciNet  MATH  Google Scholar 

  64. Olson, M.D., Lindberg, G.M.: Dynamic analysis of shallow shell with a doubly-curved triangular finite element. J. Sound Vib. 19, 299–318 (1971)

    Google Scholar 

  65. Van Do, V., Lee, C.H.: Static bending and free vibration analysis of multilayered composite cylindrical and spherical panels reinforced with graphene platelets by using isogeometric analysis method. Eng. Struct. 215, 110682 (2020)

    Google Scholar 

  66. Majidi-Mozafari, K., Bahaadini, R., Saidi, A.R., Khodabakhsh, R.: An analytical solution for vibration analysis of sandwich plates reinforced with graphene nanoplatelets. Eng. Comput. 38, 2107–2123 (2020)

    Google Scholar 

  67. Guo, H., Zur, K.K., Ouyang, X.: New insights into the nonlinear stability of nanocomposite cylindrical panels under aero-thermal loads. Compos. Struct. 303, 116231 (2023)

    Google Scholar 

  68. Guo, H., Ouyang, X., Zur, K.K., Wu, X., Yang, T., Ferreira, A.J.M.: On the large amplitude vibration of rotating pre-twisted graphene nanocomposite blades in a thermal environment. Compos. Struct. 282, 115129 (2022)

    Google Scholar 

  69. Guo, H., Ouyang, X., Yang, T., Zur, K.K., Reddy, J.N.: On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets. Eng. Struct. 249, 113286 (2021)

    Google Scholar 

  70. Guo, H., Ouyang, X., Zur, K.K., Wu, X.: Meshless numerical approach to flutter analysis of rotating pre-twisted nanocomposite blades subjected to supersonic airflow. Eng. Anal. Bound. Elem. 132, 1–11 (2021)

    MathSciNet  MATH  Google Scholar 

  71. Guo, H., Du, X., Zur, K.K.: On the dynamics of rotating matrix cracked FG-GPLRC cylindrical shells via the element free IMLS-Ritz method. Eng. Anal. Bound. Elem. 131, 228–239 (2021)

    MathSciNet  MATH  Google Scholar 

  72. Eyvazian, A., Sebaey, T.A., Zur, K.K., Khan, A., Zhang, H., Wong, S.H.F.: On the dynamics of FG-GPLRC sandwich cylinders based on an unconstrained higher-order theory. Compos. Struct. 267, 113879 (2021)

    Google Scholar 

  73. Guo, H., Yang, T., Zur, K.K., Reddy, J., Ferreira, A.J.M.: Effect of thermal environment on nonlinear flutter of laminated composite plates reinforced with graphene nanoplatelets. Model. Comput. Vib. Probl. 1, 1–32 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Tao or Yaser Kiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Chen, C. & Kiani, Y. Frequency analysis of smart sandwich cylindrical panels with nanocomposite core and piezoelectric face sheets. Acta Mech 234, 3219–3240 (2023). https://doi.org/10.1007/s00707-023-03557-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03557-8

Navigation