Skip to main content
Log in

Quasi-3D nonlinear primary resonance of randomly oriented CNT-reinforced micro/nano-beams incorporating nonlocal and couple stress tensors

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the current research examination, the nonlinear primary resonance of softly periodic excited nanocomposite micro/nano-beams containing nanofillers agglomeration is analyzed incorporating geometrical nonlinearity. To fulfill this motivation, the nonlocal couple stress (NCS) theory of continuum elasticity is formulated within the framework of the quasi-3D beam model integrating different size dependency features together with the geometrical nonlinearity. The associated constructive material properties are captured based upon a micromechanical homogenization scheme containing only two parameters to take the associated agglomeration of randomly oriented carbon nanotubes (CNTs) into account. The solution of the obtained unconventional nonlinear governing differential equations of motion is then achieved numerically by putting the shifted Chebyshev–Gauss–Lobatto discretization pattern in conjunction with the pseudo-arc-length continuation strategy. The NCS-based frequency–response and amplitude–response characteristic curves associated with the primary resonance are tracked down relevant to various degrees of agglomeration including complete and partial ones. It is indicated that by increasing the CNT amount inside clusters, the height of predicted jump feature increases and its peak tends to a higher ratio of excitation frequency to natural frequency. Additionally, it is demonstrated that by decreasing the cluster volume fraction, the soft excitation amplitudes at the bifurcation points enhance, especially at the first one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nuhu, A.A., Safaei, B.: State-of-the-art of vibration analysis of small-sized structures by using nonclassical continuum theories of elasticity. Arch. Comput. Methods Eng. 2022(29), 4959–5147 (2022). https://doi.org/10.1007/S11831-022-09754-3

    Article  Google Scholar 

  2. Tornabene, F., Fantuzzi, N., Ubertini, F., Viola, E.: Strong formulation finite element method based on differential quadrature: a survey. Appl. Mech. Rev. (2015). https://doi.org/10.1115/1.4028859

    Article  Google Scholar 

  3. Kamarian, S., Salim, M., Dimitri, R., Tornabene, F.: Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes. Int. J. Mech. Sci. 108–109, 157–165 (2016). https://doi.org/10.1016/j.ijmecsci.2016.02.006

    Article  Google Scholar 

  4. Rama, G., Marinkovic, D.Z., Zehn, M.W., Rama, G., Marinkovic, D.Z., Zehn, M.W.: Linear shell elements for active piezoelectric laminates. Smart Struct. Syst. 20, 729 (2017). https://doi.org/10.12989/SSS.2017.20.6.729

    Article  Google Scholar 

  5. Zang, Z., Zeng, X., Wang, M., Hu, W., Liu, C., Tang, X.: Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sensors Actuators, B Chem. 252, 1179–1186 (2017). https://doi.org/10.1016/j.snb.2017.07.144

    Article  Google Scholar 

  6. Kiani, Y., Dimitri, R., Tornabene, F.: Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation. Compos. Part B Eng. 147, 169–177 (2018). https://doi.org/10.1016/j.compositesb.2018.04.028

    Article  Google Scholar 

  7. Rama, G., Marinkovic, D., Zehn, M.: High performance 3-node shell element for linear and geometrically nonlinear analysis of composite laminates. Compos. Part B Eng. 151, 118–126 (2018). https://doi.org/10.1016/J.COMPOSITESB.2018.06.007

    Article  Google Scholar 

  8. Sahmani, S., Shahali, M., Khandan, A., Saber-Samandari, S., Aghdam, M.M.: Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scaffolds fabricated via space holder technique. Appl. Clay Sci. 165, 112–123 (2018). https://doi.org/10.1016/J.CLAY.2018.08.013

    Article  Google Scholar 

  9. Sahmani, S., Khandan, A., Saber-Samandari, S., Aghdam, M.M.: Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: application, communication and simulation. Ceram. Int. 44, 11282–11291 (2018). https://doi.org/10.1016/J.CERAMINT.2018.03.173

    Article  Google Scholar 

  10. Tornabene, F., Bacciocchi, M., Fantuzzi, N., Reddy, J.N.: Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym. Compos. 40, E102–E126 (2019). https://doi.org/10.1002/pc.24520

    Article  Google Scholar 

  11. Ha, G.X., Marinkovic, D., Zehn, M.W.: Parametric investigations of mechanical properties of nap-core sandwich composites. Compos. Part B Eng. 161, 427–438 (2019). https://doi.org/10.1016/J.COMPOSITESB.2018.12.108

    Article  Google Scholar 

  12. Chaudhary, A., Shukla, R.K., Malik, P., Mehra, R., Raina, K.K.: ZnO/FLC nanocomposites with low driving voltage and non-volatile memory for information storage applications. Curr. Appl. Phys. 19, 1374–1378 (2019). https://doi.org/10.1016/j.cap.2019.08.026

    Article  Google Scholar 

  13. Çıplak, Z., Yıldız, A., Yıldız, N.: Green preparation of ternary reduced graphene oxide-au@polyaniline nanocomposite for supercapacitor application. J. Energy Storage 32, 6 (2020). https://doi.org/10.1016/j.est.2020.101846

    Article  Google Scholar 

  14. Sahmani, S., Khandan, A., Esmaeili, S., Saber-Samandari, S., Ghadiri Nejad, M., Aghdam, M.M.: Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: Fabrication, characterization and simulation. Ceram. Int. 46, 2447–2456 (2020). https://doi.org/10.1016/J.CERAMINT.2019.09.238

    Article  Google Scholar 

  15. Sahmani, S., Khandan, A., Saber-Samandari, S., Mohammadi Aghdam, M.: Effect of magnetite nanoparticles on the biological and mechanical properties of hydroxyapatite porous scaffolds coated with ibuprofen drug. Mater. Sci. Eng. C 11, 110835 (2020). https://doi.org/10.1016/j.msec.2020.110835

    Article  Google Scholar 

  16. Shafique, S., Yang, S., Iqbal, T., Cheng, B., Wang, Y., Sarwar, H., et al.: Improving the performance of V2O5/rGO hybrid nanocomposites for photodetector applications. Sensors Actuators A Phys. 332, 3 (2021). https://doi.org/10.1016/j.sna.2021.113073

    Article  Google Scholar 

  17. Seyfi, A., Teimouri, A., Dimitri, R., Tornabene, F.: Dispersion of elastic waves in functionally graded CNTs-reinforced composite beams. Appl. Sci. 12, 3852 (2022). https://doi.org/10.3390/app12083852

    Article  Google Scholar 

  18. Mazumder, M.R.H., Mathews, L.D., Mateti, S., Salim, N.V., Parameswaranpillai, J., Govindaraj, P., et al.: Boron nitride based polymer nanocomposites for heat dissipation and thermal management applications. Appl. Mater. Today 29, 2 (2022). https://doi.org/10.1016/j.apmt.2022.101672

    Article  Google Scholar 

  19. Mohammad Abadi, M., Daneshmehr, A.R.: An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 75, 40–53 (2014). https://doi.org/10.1016/j.ijengsci.2013.11.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R., Sahmani, S.: Postbuckling analysis of Timoshenko nanobeams including surface stress effect. Int. J. Eng. Sci. 75, 1–10 (2014). https://doi.org/10.1016/j.ijengsci.2013.10.002

    Article  Google Scholar 

  21. Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R., Sahmani, S.: Postbuckling characteristics of nanobeams based on the surface elasticity theory. Compos. Part B Eng. 55, 240–246 (2013). https://doi.org/10.1016/j.compositesb.2013.05.040

    Article  Google Scholar 

  22. Şimşek, M.: Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using He’s variational method. Compos. Struct. 131, 207–214 (2015). https://doi.org/10.1016/j.compstruct.2015.05.004

    Article  Google Scholar 

  23. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016). https://doi.org/10.1016/j.apm.2015.11.026

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, L., Hu, Y.: Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 120, 159–170 (2017). https://doi.org/10.1016/j.ijmecsci.2016.11.025

    Article  Google Scholar 

  25. Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Math. Biosci. 295, 24–35 (2018). https://doi.org/10.1016/j.mbs.2017.11.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Sahmani, S., Aghdam, M.M.: Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency. Results Phys. 8, 879–892 (2018). https://doi.org/10.1016/j.rinp.2018.01.002

    Article  Google Scholar 

  27. Nguyen, N.D., Nguyen, T.K., Thai, H.T., Vo, T.P.: A Ritz type solution with exponential trial functions for laminated composite beams based on the modified couple stress theory. Compos. Struct. 191, 154–167 (2018). https://doi.org/10.1016/j.compstruct.2018.02.025

    Article  Google Scholar 

  28. Trinh, L.C., Vo, T.P., Thai, H.T., Nguyen, T.K.: Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions. Compos. Part B Eng. 134, 225–245 (2018). https://doi.org/10.1016/j.compositesb.2017.09.054

    Article  Google Scholar 

  29. Sahmani, S., Safaei, B.: Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin-Walled Struct. 140, 342–356 (2019)

    Article  Google Scholar 

  30. Sahmani, S., Safaei, B.: Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation. Thin-Walled Struct. 143, 106226 (2019)

    Article  Google Scholar 

  31. Sahmani, S., Safaei, B.: Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl. Math. Model. 82, 336–358 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fang, J., Zheng, S., Xiao, J., Zhang, X.: Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerosp. Sci. Technol. 106, 106146 (2020)

    Article  Google Scholar 

  33. Sarthak, D., Prateek, G., Vasudevan, R., Polit, O., Ganapathi, M.: Dynamic buckling of classical/non-classical curved beams by nonlocal nonlinear finite element accounting for size dependent effect and using higher-order shear flexible model. Int J Non Linear Mech 125, 103536 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103536

    Article  Google Scholar 

  34. Fan, F., Lei, B., Sahmani, S., Safaei, B.: On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-Walled Struct. 154, 106841 (2020). https://doi.org/10.1016/j.tws.2020.106841

    Article  Google Scholar 

  35. Yuan, Y., Zhao, K., Han, Y., Sahmani, S., Safaei, B.: Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model. Thin-Walled Struct. 154, 106857 (2020)

    Article  Google Scholar 

  36. Yuan, Y., Zhao, K., Zhao, Y., Sahmani, S., Safaei, B.: Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech. Mater. 148, 103507 (2020). https://doi.org/10.1016/j.mechmat.2020.103507

    Article  Google Scholar 

  37. Yuan, Y., Zhao, X., Zhao, Y., Sahmani, S., Safaei, B.: Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct. 159, 107249 (2021). https://doi.org/10.1016/j.tws.2020.107249

    Article  Google Scholar 

  38. Yang, Y., Sahmani, S., Safaei, B.: Couple stress-based nonlinear primary resonant dynamics of FGM composite truncated conical microshells integrated with magnetostrictive layers. Appl. Math. Mech. 42, 209–222 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bacciocchi, M., Tarantino, A.M.: Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach. Compos. Struct. 272, 114083 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.114083

    Article  Google Scholar 

  40. Tang, Y., Qing, H.: Elastic buckling and free vibration analysis of functionally graded Timoshenko beam with nonlocal strain gradient integral model. Appl. Math. Model. 96, 657–677 (2021). https://doi.org/10.1016/J.APM.2021.03.040

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Z., Zhao, S., Yang, J., Liu, A., Fu, J.: Thermomechanical in-plane dynamic instability of asymmetric restrained functionally graded graphene reinforced composite arches via machine learning-based models. Compos. Struct. 308, 116709 (2023). https://doi.org/10.1016/J.COMPSTRUCT.2023.116709

    Article  Google Scholar 

  42. Babaei, H.: On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations. Compos. Struct. 276, 7 (2021). https://doi.org/10.1016/j.compstruct.2021.114467

    Article  Google Scholar 

  43. Fan, F., Xu, Y., Sahmani, S., Safaei, B.: Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput. Methods Appl. Mech. Eng. 372, 113400 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Fan, F., Safaei, B., Sahmani, S.: Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis. Thin-Walled Struct. 159, 107231 (2021). https://doi.org/10.1016/j.tws.2020.107231

    Article  Google Scholar 

  45. Fan, F., Cai, X., Sahmani, S., Safaei, B.: Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Compos. Struct. 262, 113604 (2021). https://doi.org/10.1016/j.compstruct.2021.113604

    Article  Google Scholar 

  46. Fan, F., Sahmani, S., Safaei, B.: Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation. Compos. Struct. 255, 112969 (2021). https://doi.org/10.1016/j.compstruct.2020.112969

    Article  Google Scholar 

  47. Thang, P.T., Tran, P., Nguyen-Thoi, T.: Applying nonlocal strain gradient theory to size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Appl. Math. Model 93, 775–791 (2021). https://doi.org/10.1016/j.apm.2021.01.001

    Article  MathSciNet  MATH  Google Scholar 

  48. Arshid, E., Amir, S., Loghman, A.: Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp. Sci. Technol. 111, 1 (2021). https://doi.org/10.1016/j.ast.2021.106561

    Article  Google Scholar 

  49. Sahmani, S., Madyira, D.M.: Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials. Mech. Based Des. Struct. Mach. (2019). https://doi.org/10.1080/15397734.2019.1695627

    Article  Google Scholar 

  50. Tang, P., Sun, Y., Sahmani, S., Madyira, D.M.: Isogeometric small-scale-dependent nonlinear oscillations of quasi-3D FG inhomogeneous arbitrary-shaped microplates with variable thickness. J. Brazilian Soc. Mech Sci Eng 43, 1–16 (2021). https://doi.org/10.1007/S40430-021-03057-7/FIGURES/8

    Article  Google Scholar 

  51. Yang, Z., Lu, H., Sahmani, S., Safaei, B.: Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch. Civ. Mech. Eng. 21, 1–19 (2021). https://doi.org/10.1007/S43452-021-00264-W/TABLES/5

    Article  Google Scholar 

  52. Hou, R., Sahmani, S., Safaei, B.: Nonlinear oscillations of elliptical and sector prefabricated nanoplate-type structures made of functionally graded building material. Phys. Scr. 96, 115704 (2021). https://doi.org/10.1088/1402-4896/AC169D

    Article  Google Scholar 

  53. Wang, P., Yuan, P., Sahmani, S., Safaei, B.: Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA. Thin-Walled Struct. 166, 1 (2021). https://doi.org/10.1016/j.tws.2021.108101

    Article  Google Scholar 

  54. Abdelrahman, A.A., Esen, I., Eltaher, M.A.: Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment. Appl. Math. Comput. 407, 7 (2021). https://doi.org/10.1016/j.amc.2021.126307

    Article  MathSciNet  MATH  Google Scholar 

  55. Phung-Van, P., Ferreira, A.J.M., Nguyen-Xuan, H., Thai, C.H.: Scale-dependent nonlocal strain gradient isogeometric analysis of metal foam nanoscale plates with various porosity distributions. Compos. Struct. 268, 113949 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.113949

    Article  Google Scholar 

  56. Xie, B., Sahmani, S., Safaei, B., Xu, B.: Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng. Comput. 37, 1611–1634 (2021). https://doi.org/10.1007/s00366-019-00931-w

    Article  Google Scholar 

  57. Jin, Q., Ren, Y.: Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes. Commun. Nonlinear Sci. Numer. Simul. 104, 4 (2022). https://doi.org/10.1016/j.cnsns.2021.106044

    Article  MathSciNet  MATH  Google Scholar 

  58. Xie, Y., Lei, J., Guo, S., Han, S., Ruan, J., He, Y.: Size-dependent vibration of multi-scale sandwich micro-beams: an experimental study and theoretical analysis. Thin-Walled Struct. 175, 5 (2022). https://doi.org/10.1016/j.tws.2022.109115

    Article  Google Scholar 

  59. Zhao, J., Wang, J., Sahmani, S., Safaei, B.: Probabilistic-based nonlinear stability analysis of randomly reinforced microshells under combined axial-lateral load using meshfree strain gradient formulations. Eng. Struct. 262, 114344 (2022). https://doi.org/10.1016/J.ENGSTRUCT.2022.114344

    Article  Google Scholar 

  60. Liu, H., Safaei, B., Sahmani, S.: Combined axial and lateral stability behavior of random checkerboard reinforced cylindrical microshells via a couple stress-based moving Kriging meshfree model. Arch. Civ. Mech. Eng. 22, 15 (2022). https://doi.org/10.1007/s43452-021-00338-9

    Article  Google Scholar 

  61. Yang, Z., Safaei, B., Sahmani, S., Zhang, Y.: A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells. Thin-Walled Struct. 170, 1 (2022). https://doi.org/10.1016/j.tws.2021.108631

    Article  Google Scholar 

  62. Jankowski, P.: Detection of nonlocal calibration parameters and range interaction for dynamics of FGN porous nanobeams under electro-mechanical loads. Facta Univ. Ser. Mech. Eng. 20, 457–78 (2022)

    Google Scholar 

  63. Priyanka, R., Pitchaimani, J.: Static stability and free vibration characteristics of a micro laminated beam under varying axial load using modified couple stress theory and Ritz method. Compos. Struct. 281, 8 (2022). https://doi.org/10.1016/j.compstruct.2021.115028

    Article  Google Scholar 

  64. Civalek, Ö., Uzun, B., Yaylı, M.Ö.: Size dependent torsional vibration of a restrained single walled carbon nanotube (SWCNT) via nonlocal strain gradient approach. Mater. Today Commun. 33, 1 (2022). https://doi.org/10.1016/j.mtcomm.2022.104271

    Article  Google Scholar 

  65. Limkatanyu, S., Sae-Long, W., Rungamornrat, J., Buachart, C., Sukontasukkul, P., Keawsawasvong, S., et al.: Bending, buckling and free vibration analysis of nanobeam-substrate medium systems. Facta Univ. Ser. Mech. Eng. 20, 561–87 (2022). https://doi.org/10.22190/FUME220506029L

    Article  Google Scholar 

  66. Chu, J., Wang, Y., Sahmani, S., Safaei, B.: Nonlinear large-amplitude oscillations of PFG composite rectangular microplates based upon the modified strain gradient elasticity theory. Int. J. Struct. Stab. Dyn. 22, 68 (2022). https://doi.org/10.1142/S0219455422500687

    Article  MathSciNet  Google Scholar 

  67. Wang, J., Ma, B., Gao, J., Liu, H., Safaei, B., Sahmani, S.: Nonlinear stability characteristics of porous graded composite microplates including various microstructural-dependent strain gradient tensors. Int. J. Appl. Mech. 14(1), 2150129 (2022)

    Article  Google Scholar 

  68. Zuo, D., Safaei, B., Sahmani, S., Ma, G.: Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors. Appl. Math. Mech. 43, 825–44 (2022). https://doi.org/10.1007/S10483-022-2851-7

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang, P., Schiavone, P., Qing, H.: Stress-driven local/nonlocal mixture model for buckling and free vibration of FG sandwich Timoshenko beams resting on a nonlocal elastic foundation. Compos. Struct. 289, 3 (2022). https://doi.org/10.1016/j.compstruct.2022.115473

    Article  Google Scholar 

  70. Wang, X., Zhou, G., Safaei, B., Sahmani, S.: Boundary layer modeling of surface residual tension in postbuckling behavior of axially loaded silicon panels at nanoscale embedded in elastic foundations. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1794889

    Article  Google Scholar 

  71. Rao, R., Ye, Z., Yang, Z., Sahmani, S., Safaei, B.: Nonlinear buckling mode transition analysis of axial–thermal–electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Arch. Civ. Mech. Eng. 22, 1–21 (2022). https://doi.org/10.1007/S43452-022-00437-1/TABLES/7

    Article  Google Scholar 

  72. Alshenawy, R., Safaei, B., Sahmani, S., Elmoghazy, Y., Al-Alwan, A., Al, N.M.: Buckling mode transition in nonlinear strain gradient-based stability behavior of axial-thermal-electrical loaded FG piezoelectric cylindrical panels at microscale. Eng. Anal. Bound. Elem. 141, 36–64 (2022). https://doi.org/10.1016/J.ENGANABOUND.2022.04.010

    Article  MathSciNet  MATH  Google Scholar 

  73. Alshenawy, R., Sahmani, S., Safaei, B., Elmoghazy, Y., Al-Alwan, A., Al, N.M.: Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations. Appl. Math. Comput. 439, 127623 (2023). https://doi.org/10.1016/J.AMC.2022.127623

    Article  MathSciNet  MATH  Google Scholar 

  74. Noureddine, M., Mohamed, L., Al-Douri, Y., Djillali, B., Mokhtar, B.: Effect of chiral angle and chiral index on the vibration of single-walled carbon nanotubes using nonlocal Euler–Bernoulli beam model. Comput. Condens. Matter. (2022). https://doi.org/10.1016/j.cocom.2022.e00655

    Article  Google Scholar 

  75. Yue, X.-G., Sahmani, S., Luo, H., Safaei, B.: Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams. Arch. Civ. Mech. Eng. 23, 21 (2023). https://doi.org/10.1007/s43452-022-00548-9

    Article  Google Scholar 

  76. Yue, X.-G., Sahmani, S., Safaei, B.: Nonlocal couple stress-based quasi-3D nonlinear dynamics of agglomerated CNT-reinforced micro/nano-plates before and after bifurcation phenomenon. Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/ACB858

    Article  Google Scholar 

  77. Tang, Y., Qing, H.: Size-dependent nonlinear post-buckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models. Commun. Nonlinear Sci. Numer. Simul. 116, 8 (2023). https://doi.org/10.1016/j.cnsns.2022.106808

    Article  MathSciNet  MATH  Google Scholar 

  78. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250–257 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  79. Yue, X.-G., Sahmani, S., Luo, H., Safaei, B.: Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams. Arch. Civ. Mech. Eng. (2022). https://doi.org/10.1007/s43452-022-00548-9

    Article  Google Scholar 

  80. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  81. Wang, X., Wang, Y.: Free vibration analysis of multiple-stepped beams by the differential quadrature element method. Appl. Math. Comput. 219, 5802–5810 (2013). https://doi.org/10.1016/j.amc.2012.12.037

    Article  MathSciNet  MATH  Google Scholar 

  82. Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R., Sahmani, S.: On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Compos. Part B Eng. 60, 158–166 (2014). https://doi.org/10.1016/j.compositesb.2013.12.066

    Article  Google Scholar 

  83. Singh, R., Sharma, P.: Free vibration analysis of axially functionally graded tapered beam using harmonic differential quadrature method. Mater. Today. Proc. 44, 2223–2227 (2021). https://doi.org/10.1016/j.matpr.2020.12.357

    Article  Google Scholar 

  84. Keller H.B.: Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., (1976), p. 359–84. Academic Press, New York (1977)

  85. Sahmani, S., Bahrami, M., Aghdam, M.M., Ansari, R.: Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos. Struct. 118, 149–158 (2014)

    Article  Google Scholar 

  86. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007). https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  87. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., Sadeghi, F.: Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos. Struct. 113, 316–327 (2014). https://doi.org/10.1016/J.COMPSTRUCT.2014.03.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Safaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ye, W., Sahmani, S. et al. Quasi-3D nonlinear primary resonance of randomly oriented CNT-reinforced micro/nano-beams incorporating nonlocal and couple stress tensors. Acta Mech 234, 3259–3285 (2023). https://doi.org/10.1007/s00707-023-03554-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03554-x

Navigation