Skip to main content
Log in

A modified Greenwood–Williamson contact model with asperity interactions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Accurate relation between load and area is of great interest in tribology, especially for large contact fraction, in which the asperity interactions play an import role. The constant mean contact radius obtained in the original Greenwood–Williamson model is adopted in this work; Then, the asperity interactions are dealt with by arranging the random distributed contact spots to hexagon distribution. Finite element simulation is employed to consider only a representative unit with symmetrical boundary conditions, and the corresponding load-area relation is determined up to almost complete contact. For a given contact fraction, interactions induce larger load compared to the GW model without asperity interactions. Furthermore, by comparing with the analytical result given by an incremental contact for small contact fraction, the obtained load-area relation is extended to a general formulation, which shows good agreement with direct finite element simulations. The obtained relations are more general and applicable for a large range of contact fraction. This model provides an efficient method to predict the overall contact response of rough surfaces and reduces the computational burden greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., Persson, B.N.J., Harris, K., Bennett, A., Schulze, K., Rohde, S., et al.: Meeting the contact-mechanics challenge. Tribol. Lett. 65(4), 118 (2017). https://doi.org/10.1007/s11249-017-0900-2

    Article  Google Scholar 

  2. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. Roy. Soc. Lond. A 295, 300–319 (1966). https://doi.org/10.1098/rspa.1966.0242

    Article  Google Scholar 

  3. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35, 87–111 (1975). https://doi.org/10.1016/0093-6413(76)90006-9

    Article  Google Scholar 

  4. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. ASME J. Tribol. 101, 257–263 (1987). https://doi.org/10.1115/1.3261348

    Article  Google Scholar 

  5. Yuan, W.K., Long, J.M., Ding, Y., Wang, G.F.: Statistical contact model of rough surfaces: the role of surface tension. Int. J. Solids Struct. 138(1), 217–223 (2018). https://doi.org/10.1016/j.ijsolstr.2018.01.014

    Article  Google Scholar 

  6. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001). https://doi.org/10.1063/1.1388626

    Article  Google Scholar 

  7. Carbone, G., Bottiglione, F.: Asperity contact theories: Do they predict linearity between contact area and load? J. Mech. Phys. Solids 56(8), 2555–2572 (2008). https://doi.org/10.1016/j.jmps.2008.03.011

    Article  MATH  Google Scholar 

  8. Wang, G.F., Liang, X.M., Yan, D.: An incremental equivalent circular contact model for rough surfaces. ASME J. Tribol. 143(8), 081503 (2021). https://doi.org/10.1115/1.4050602

    Article  Google Scholar 

  9. Liang, X.M., Ding, Y., Duo, Y., Yuan, W.K., Wang, G.F.: Elastic-perfectly plastic contact of rough surfaces: an incremental equivalent circular model. ASME J. Tribol. 144(5), 051501 (2022). https://doi.org/10.1115/1.4051979

    Article  Google Scholar 

  10. Zhai, C.P., Hanaor, D., Gan, Y.X.: Contact stiffness of multiscale surfaces by truncation analysis. Int. J. Mech. Sci. 131–132, 305–316 (2017). https://doi.org/10.1016/j.ijmecsci.2017.07.018

    Article  Google Scholar 

  11. Pullen, J., Williamson, J.B.P.: On the plastic contact of rough surfaces. Proc. Roy. Soc. A 327, 159–173 (1972). https://doi.org/10.1098/rspa.1972.0038

    Article  Google Scholar 

  12. Zhao, Y.W., Chang, L.: A model of asperity interactions in elastic-plastic contact of rough surfaces. ASME J. Tribol. 123, 857–864 (2001). https://doi.org/10.1115/1.1338482

    Article  Google Scholar 

  13. Nowell, D., Hills, D.A.: Hertzian contact of ground surfaces. ASME J. Tribol. 111, 175–179 (1989). https://doi.org/10.1115/1.3261869

    Article  Google Scholar 

  14. Ciavarella, M., Delfine, V., Demelio, G.: A re-vitalized Greenwood and Williamson model of elastic contact between fractal surfaces. J. Mech. Phys. Solids 54, 2569–2591 (2006). https://doi.org/10.1016/j.jmps.2006.05.006

    Article  MATH  Google Scholar 

  15. Ciavarella, M., Greenwood, J.A., Paggi, M.: Inclusion of interaction in the Greenwood and Williamson contact theory. Wear 265, 729–734 (2008). https://doi.org/10.1016/j.wear.2008.01.019

    Article  Google Scholar 

  16. Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear 278–279, 28–33 (2012). https://doi.org/10.1016/j.wear.2011.12.013

    Article  Google Scholar 

  17. Vakis, A.I.: Asperity interaction and substrate deformation in statistical summation models of contact between rough surfaces. J. Appl. Mech. 81(4), 041012 (2014). https://doi.org/10.1115/1.4025413

    Article  Google Scholar 

  18. Song, H., Van der Giessen, E., Vakis, A.I.: Erratum: “Asperity interaction and substrate deformation in statistical summation models of contact between rough surfaces.” J. Appl. Mech. 83(8), 087001 (2016). https://doi.org/10.1115/1.4033534

    Article  Google Scholar 

  19. Song, H., Vakis, A.I., Liu, X., Van der Giessen, E.: Statistical model of rough surface contact accounting for size-dependent plasticity and asperity interaction. J. Mech. Phys. Solids 106, 1–14 (2017). https://doi.org/10.1016/j.jmps.2017.05.014

    Article  MathSciNet  Google Scholar 

  20. Zhang, S., Song, H., Sandfeld, S., Liu, X., Wei, Y.G.: Discrete Greenwood-Williamson modeling of rough surface contact accounting for three dimensional sinusoidal asperities and asperity interaction. J. Tribol. 141(12), 121401 (2019). https://doi.org/10.1115/1.4044635

    Article  Google Scholar 

  21. Wang, G.F., Long, J.M., Feng, X.Q.: A self-consistent model for the elastic contact of rough surfaces. Acta Mech. 226(2), 285–293 (2015). https://doi.org/10.1007/s00707-014-1177-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, W.G., Su, J.J., Feng, X.Q.: Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75(17), 4965–4972 (2008). https://doi.org/10.1016/j.engfracmech.2008.06.016

    Article  Google Scholar 

  23. Johnson, K.L., Greenwood, J.A., Higginson, J.G.: The contact of elastic regular wavy surfaces. Int. J. Mech. Sci. 27, 383–396 (1985). https://doi.org/10.1016/0020-7403(85)90029-3

    Article  MATH  Google Scholar 

  24. Li, S., Yao, Q.Z., Li, Q.Y., Feng, X.Q., Gao, H.J.: Contact stiffness of regularly patterned multi-asperity interfaces. J. Mech. Phys. Solids 111, 277–289 (2018). https://doi.org/10.1016/j.jmps.2017.10.019

    Article  MathSciNet  MATH  Google Scholar 

  25. McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107(1), 37–60 (1986). https://doi.org/10.1016/0043-1648(86)90045-1

    Article  Google Scholar 

  26. Wang, S.H., Yuan, W.K., Liang, X.M., Wang, G.F.: A new analytical model for the flattening of Gaussian rough surfaces. Euro. J. Mech. A-Solids 94, 104578 (2022). https://doi.org/10.1016/j.euromechsol.2022.104578

    Article  MathSciNet  MATH  Google Scholar 

  27. Kanafi, M.M.: Surface generator: artificial randomly rough surfaces.https://www.mathworks.com/matlabcentral/fileexchange/60817-surface-generator-artificial-randomly-rough-surfaces (2020). Accessed 30 September 2020

Download references

Acknowledgements

The supports from the National Natural Science Foundation of China (Grant No. 11525209) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Feng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY., Wang, GF. A modified Greenwood–Williamson contact model with asperity interactions. Acta Mech 234, 2859–2868 (2023). https://doi.org/10.1007/s00707-023-03538-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03538-x

Navigation