Skip to main content
Log in

Numerical and experimental study of elastohydrodynamic grease lubrication of dimple textured surfaces

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Estimation of friction and wear is a challenging problem, and finding a way to reduce them has been a concern for many years. One of the most interesting ways is to make small dimples on the surface, which increases the preservation of the lubricant in the contact area. Grease behavior is non-Newtonian lubricant, and each type of grease has its unique behavior. In this research, a model for the behavior of grease as a lubricant on surfaces is investigated. Non-conformal surfaces are considered, and their deformation due to the application of load is assumed by elastohydrodynamic contact condition. The film thickness and pressure distribution in the lubricant layer are extracted by modeling the grease behavior. The model considered the transient phenomenon during passing pin over dimple. The effect of parameters such as the diameter and depth of the dimples, the applied load, and the speed of in-contact surfaces can be considered in the model. Finally, a friction estimation formula is developed with these findings. The experimental samples were then examined using a pin-on-disk test apparatus. Measuring friction on textured and flat surfaces was the criterion for comparing the performance of these dimples. The numerical results and experimental results are consistent. The model can successfully estimate the friction coefficient by a 4.5 percent average error. Using textured surfaces shows about 7 percent less friction compared to flat surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Venner, C.H., van Zoelen, M.T., Lugt, P.M.: Thin layer flow and film decay modeling for grease lubricated rolling bearings. Tribol. Int. 47, 175–187 (2012)

    Article  Google Scholar 

  2. Otsu, T., Nagata, Y., Sugimura, J., Glovnea, R.: Cavitation phenomena in pure-sliding grease EHL Films. STLE/ASME 2010 International Joint Tribology Conference San Francisco, California, USA, pp. 17–20, (2010)

  3. Lugt, P.M.: A review on grease lubrication in rolling bearings. Tribol. Trans. 52(4), 470–480 (2009)

    Article  Google Scholar 

  4. Morales-Espejel, G.E., Lugt, P.M., Pasaribu, H.R., Cen, H.: Film thickness in grease lubricated slow rotating rolling bearings. Tribol. Int. 74, 7–19 (2014)

    Article  Google Scholar 

  5. Kauzlarich, J.J., Greenwood, J.A.: Inlet shear heating in elastohydrodynamic lubrication. Trans. ASME J. Lubr. Technol. 95, 417–426 (1973)

    Article  Google Scholar 

  6. Jonkisz, W., Krzeminski-Freda, H.: The properties of elastohydrodynamic grease films. Wear 77, 277–285 (1979)

    Article  Google Scholar 

  7. Cheng, J.: Elastohydrodynamic grease lubrication theory and numerical solution inline contacts. Tribol. Trans. 37(4), 711–718 (1994)

    Article  Google Scholar 

  8. Sugimura, J., Akiyama, M.: Study of non-steady state grease lubrication with fluorescence microscope. Elsevier Tribol. Series 39, 285–294 (2001)

    Article  Google Scholar 

  9. Lu, X., Khonsari, M.M.: An experimental study of grease-lubricated journal bearings undergoing oscillatory motion. J. Tribol. 129(3), 640–646 (2007)

    Article  Google Scholar 

  10. Lu, X., Khonsari, M.M.: An experimental investigation of grease-lubricated journal bearings. J. Tribol. 129(1), 84–90 (2006)

    Article  Google Scholar 

  11. Cousseau, T., Björling, M., Graça, B., Campos, A., Seabra, J., Larsson, R.: Film thickness in a ball-on-disk contact lubricated with greases, bleed oils and base oils. Tribol. Int. 53, 53–60 (2012)

    Article  Google Scholar 

  12. Akbarzadeh, S., Khonsari, M.M.: Effect of surface pattern on stribeck curve. Tribol. Lett. 37, 477–486 (2010). https://doi.org/10.1007/s11249-009-9543-2

    Article  Google Scholar 

  13. Etsion, I., Burstein, L.: A model for mechanical seals with regular microsurface structure. Tribol. Trans. 39, 677–683 (1996)

    Article  Google Scholar 

  14. Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127, 248–253 (2005)

    Article  Google Scholar 

  15. Dobrica, M.B., Fillon, M., Pascovici, M.D., Cicone, T.: Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach. J. Eng. Tribol. 224, 737–750 (2010)

    Google Scholar 

  16. Fowell, M.T., Medina, S., Olver, A.V., Spikes, H.A., Pegg, I.G.: Parametric study of texturing in convergent bearings. Tribol. Int. 52, 7–16 (2012)

    Article  Google Scholar 

  17. Coblas, D.G., Fatu, A., Hajjam, M.: Manufacturing textured surfaces: state of art and recent developments. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 3–29 (2015)

    Article  Google Scholar 

  18. Costa, H.L., Hutchings, I.M.: Some innovative surface texturing techniques for tribological purposes. Proc. Mech. Eng. Part J-J. Eng. Tribol. 229, 429–448 (2015)

    Article  Google Scholar 

  19. Nanbu, T., Ren, N., Yasuda, Y., Zhu, D., Wang, Q.J.: Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion. Tribol. Lett. 29, 241–252 (2008)

    Article  Google Scholar 

  20. Shen, C., Khonsari, M.M.: Effect of dimple’s internal structure on hydrodynamic lubrication. Tribol. Lett. 52, 415–430 (2013)

    Article  Google Scholar 

  21. Caramia, G., Carbone, G., De Palma, P.: Hydrodynamic lubrication of micro-textured surfaces: two dimensional CFD-analysis. Tribol. Int 88, 162–169 (2015)

    Article  Google Scholar 

  22. Han, J., Fang, L., Sun, J., Ge, S.: Hydrodynamic lubrication of microdimple textured surface using three-dimensional CFD. Tribol. Trans. 53, 860–870 (2010)

    Article  Google Scholar 

  23. Gropper, D., Harvey, T.J., Wang, L.: Numerical analysis and optimization of surface textures for a tilting pad thrust bearing. Tribol. Int. 124, 134–144 (2018)

    Article  Google Scholar 

  24. Gropper, D., Harvey, T.J., Wang, L.: A numerical model for design and optimization of surface textures for tilting pad thrust bearings. Tribol. Int. 119, 190–207 (2018)

    Article  Google Scholar 

  25. Rahmani, R., Rahnejat, H.: Enhanced performance of optimised partially textured load bearing surfaces. Tribol. Int. 117, 272–282 (2018)

    Article  Google Scholar 

  26. Meng, X., Gu, Ch., Xie, Y.: Elasto-plastic contact of rough surfaces: a mixed-lubrication model for the textured surface analysis. Meccanica 52(7), 1541–1559 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rom, M., Müller, S.: An effective Navier-Stokes model for the simulation of textured surface lubrication. Tribol. Int. 124, 247–258 (2018)

    Article  Google Scholar 

  28. Taee, M., Torabi, A., Akbarzadeh, S., Khonsari, M.M., Badrossamay, M.: On the performance of EHL contacts with textured surfaces. Tribol. Lett. 65, 85 (2017)

    Article  Google Scholar 

  29. Xie, Y., Li, S., Hu, X., Bishara, B.: An adhesive Gurtin-Murdoch surface hydrodynamics theory of moving contact line and modeling of droplet wettability on soft substrates. J. Comput. Phys. 456, 111074 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hua, X., Puoza, J.C., Zhang, P., Yin, B., Xie, X., Din, J.: Numerical simulation and experimental analysis of grease friction properties on textured surface. Iran J. Sci. Technol. Trans. Mech. Eng. (2018). https://doi.org/10.1007/s40997-018-0162-0

    Article  Google Scholar 

  31. Sisko, A.W.: The flow of lubricating greases. Ind. Eng. Chem. 50(1789–1), 792 (1958)

    Google Scholar 

  32. Bauer, W.H., Finkelstein, A.D., M’iberley, S.E.: Flow properties of lithium stearate-oil hlodel greases as functions of soap concentration and temperature. Proc. ASLE 3, 215–224 (1960)

    Google Scholar 

  33. Herschel, W.H., Bulkley, R.: Measurement of consistency as applied to rubber-benzene solutions. Proc. ASTM 26, 621–633 (1926)

    Google Scholar 

  34. Mahncke, H.E., Tabor, W.: A simple demonstration of flow type in greases. Lub. Evg. 11, 22–28 (1955)

    Google Scholar 

  35. Dowson, D., Higginson, G.R.: Elasto-Hydrodynamic Lubrication. Pergamon Press, New York (1966)

    MATH  Google Scholar 

  36. Karthikeyan, B.K., Teodorescu, M., Rahnejat, H., Rothberg, S.J.: Thermo-elastohydrodynamics of grease-lubricated concentrated point contacts. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 224(3), 683–695 (2010)

    Article  Google Scholar 

  37. Torabi, A., Akbarzadeh, S., Azami, B.: Transient numerical modeling and experimental investigation of the effect of surface texture on elastohydrodynamic lubrication. Amirkabir J. Mech. Eng. 53, 3201–3212 (2021). https://doi.org/10.22060/mej.2020.18106.6737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Torabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, A., Alidousti, M.H. Numerical and experimental study of elastohydrodynamic grease lubrication of dimple textured surfaces. Acta Mech 234, 2919–2931 (2023). https://doi.org/10.1007/s00707-023-03535-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03535-0

Navigation