Skip to main content
Log in

Geometrically nonlinear post-buckling of advanced porous nanocomposite lying on elastic foundation in hygrothermal environment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the nonlinear post-buckling of an advanced porous nanocomposite plate with and without imperfection subjected to a hygro-thermo-mechanical load and lying on elastic foundation is carried out using third-order shear deformation theory (TSDT). Also, a modified form of a Halpin-Tsai (M-H-T) micromechanical model is proposed to characterize the mechanical properties of graphene oxide powder (GOP)-reinforced polymer nanocomposite. To this aim, the influence on random distribution, non-straight shape and agglomerated state of the GOPs is adequately incorporated into the M-H-T model. Also, two porosity distributions including symmetric and asymmetric are considered. Both the linear and nonlinear influence of temperature and moisture concentration on the bending response are probed. Large deflection theory is considered to extract the stress field and displacement field for the perfect and imperfect nanocomposite plate. Navier solution is used to solve the large deflection nonlinear equations. Numerical results are validated by existing results in the literature. A parametric investigation is established to discuss the effects of the temperature rise and moisture concentration, elastic foundation coefficients, nanoparticle geometry, aspect ratio, porosity distributions, and geometry imperfection on the GOP-reinforced polymer composite post-buckling behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, J., Jin, X., Wu, H., Guo, S.: Polyimide reinforced with hybrid graphene oxide@ carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123, 502–513 (2017)

    Article  Google Scholar 

  2. Punera, D.: The effect of agglomeration and slightly weakened CNT–matrix interface on free vibration response of cylindrical nanocomposites. Acta Mech. 232(6), 2455–2477 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alessi, S., Pitarresi, G., Spadaro, G.: Effect of hydrothermal ageing on the thermal and delamination fracture behavior of CFRP composites. Compos. B Eng. 67, 145–153 (2014)

    Article  Google Scholar 

  4. Lai, M., Botsis, J., Cugnoni, J., Coric, D.: An experimental–numerical study of moisture absorption in an epoxy. Compos. Part A: Appl. Sci. Manuf. 43(7), 1053–1060 (2012)

    Article  Google Scholar 

  5. Wang, A., Chen, H., Hao, Y., Zhang, W.: Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys. 9, 550–559 (2018)

    Article  Google Scholar 

  6. Karami, B., Shahsavari, D., Janghorban, M.: A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates. Aerosp. Sci. Technol. 82, 499–512 (2018)

    Article  Google Scholar 

  7. Jiang, R.W., Shen, Z.B., Tang, G.J.: A semi-analytical method for nonlocal buckling and vibration of a single-layered graphene sheet nanomechanical resonator subjected to initial in-plane loads. Acta Mech. 228(5), 1725–1734 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Y.M., Fan, M., Xiao, Z.M., Zhang, W.G.: The effect of surface free energy on the fracture behaviors of nanoparticle-reinforced composites. Math. Mech. Solids 27(3), 446–461 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alibeigloo, A., Emtehani, A.: Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method. Meccanica 50(1), 61–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Niu, Y., Yao, M., Wu, Q.: Nonlinear vibrations of functionally graded graphene reinforced composite cylindrical panels. Appl. Math. Model. 101, 1–18 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, S., Mao, J., Zhang, W., Lu, H.: Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate. Appl. Math. Mech. 43(3), 341–354 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, T.P., Vu, M.D., Cao, V.D., Vu, H.N.: Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FG-GRC laminated stiffeners in thermal environment. Polym. Compos. 42(6), 3051–3063 (2021)

    Article  Google Scholar 

  13. Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.: Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math. Mech. Solids 20(7), 836–870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Song, M., Yang, J., Kitipornchai, S., Zhu, W.: Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int. J. Mech. Sci. 131, 345–355 (2017)

    Article  Google Scholar 

  15. Maji, P., Rout, M., Karmakar, A.: The free vibration response of temperature-dependent carbon nanotube-reinforced composite stiffened plate. Mech. Adv. Mater. Struct. 29, 1–15 (2021)

    Google Scholar 

  16. Zhou, T., Boyd, J.G., Lutkenhaus, J.L., Lagoudas, D.C.: Micromechanics modeling of the elastic moduli of rGO/ANF nanocomposites. Acta Mech. 230(1), 265–280 (2019)

    Article  Google Scholar 

  17. Tang, L.C., Wan, Y.J., Yan, D., Pei, Y.B., Zhao, L., Li, Y.B., Wu, L.B., Jiang, J.X., Lai, G.Q.: The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)

    Article  Google Scholar 

  18. Barati, M.R., Zenkour, A.M.: Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 26(6), 503–511 (2019)

    Article  Google Scholar 

  19. Hadji, L., Amoozgar, M., Tounsi, A.: Non-linear thermal buckling of FG plates with porosity based on hyperbolic shear deformation theory. Steel Compos. Struct. 42(5), 711–722 (2022)

    Google Scholar 

  20. Jam, J.E., Kiani, Y.: Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 132, 35–43 (2015)

    Article  Google Scholar 

  21. Omidi, M., Rokni, H.D.T., Milani, A.S., Seethaler, R.J., Arasteh, R.: Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11), 3218–3228 (2016)

    Article  Google Scholar 

  22. Prashantha, K., Soulestin, J., Lacrampe, M.F., Krawczak, P., Dupin, G., Claes, M.: Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos. Sci. Technol. 69(11–12), 1756–1763 (2009)

    Article  Google Scholar 

  23. Han, D., Mei, H., Farhan, S., Xiao, S., Bai, Q., Cheng, L.: Anisotropic compressive properties of CNT/SiC composites produced by direct matrix infiltration of vertically aligned CNT forests. J. Alloys Compd. 701, 722–726 (2017)

    Article  Google Scholar 

  24. Zhang, L.W., Cui, W.C., Liew, K.M.: Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. Int. J. Mech. Sci. 103, 9–21 (2015)

    Article  Google Scholar 

  25. Sahoo, N.G., Jung, Y.C., Yoo, H.J., Cho, J.W.: Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos. Sci. Technol. 67(9), 1920–1929 (2007)

    Article  Google Scholar 

  26. Cox, H.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72 (1952)

    Article  Google Scholar 

  27. Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 80(24), 4647–4649 (2002)

    Article  Google Scholar 

  28. Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng., A 334(1–2), 173–178 (2002)

    Article  Google Scholar 

  29. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31, 491–498 (1964)

    Article  MATH  Google Scholar 

  30. Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)

    Article  Google Scholar 

  31. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016)

    Article  Google Scholar 

  32. Roberts, A.P., Garboczi, E.J.: Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 49(2), 189–197 (2001)

    Article  Google Scholar 

  33. Rahmandoust, M., Öchsner, A.: Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. J. Nano Res. 6, 185–196 (2009)

    Article  Google Scholar 

  34. Cong, P.H., Chien, T.M., Khoa, N.D., Duc, N.D.: Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp. Sci. Technol. 77, 419–428 (2018)

    Article  Google Scholar 

  35. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94(4), 1450–1460 (2012)

    Article  Google Scholar 

  36. Zheng, J., Zhang, C., Musharavati, F., Khan, A., Sebaey, T.A., Eyvazian, A.: Forced vibration characteristics of embedded graphene oxide powder reinforced metal foam nanocomposite plate in thermal environment. Case Stud. Therm. Eng. 27, 101167 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrand Rash-Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\overline{c}=\frac{{\mathfrak{y}}^{2}\left({h}_{11}{a}_{11}-{d}_{11}^{2}\right)\left[{a}_{11}\left({c}_{11}-2\mathfrak{y}{f}_{11}+{\mathfrak{y}}^{2}{h}_{11}\right)-{\left({b}_{11}-\mathfrak{y}{d}_{11}\right)}^{2}\right]-{[\left(\mathfrak{y}{f}_{11}-{\mathfrak{y}}^{2}{h}_{11}\right){a}_{11}-\mathfrak{y}{d}_{11}({b}_{11}-\mathfrak{y}{d}_{11})]}^{2}}{{a}_{11}^{2}({a}_{22}-2\beta {c}_{22}+{\beta }^{2}{f}_{22})}$$
$$\overline{d}=\frac{{c}_{11}{a}_{11}-{b}_{11}^{2}}{{a}_{11}}$$
$$\frac{\widehat{c}}{\widehat{a}}=\frac{{a}_{11}\left({c}_{11}-2\mathfrak{y}{f}_{11}+{\mathfrak{y}}^{2}{h}_{11}\right)-{({b}_{11}-\mathfrak{y}{d}_{11})}^{2}}{{a}_{11}({a}_{22}-2\beta {c}_{22}+{\beta }^{2}{f}_{22})}$$
$${E}^{"}=\frac{(1-\nu )}{2}\left[\frac{3}{8}\frac{1+{\xi }_{L}{\eta }_{L}{V}_{GPL}}{1-{\eta }_{L}{V}_{GPL}}{E}_{m}+\frac{5}{8}\frac{1+{\xi }_{T}{\eta }_{T}{V}_{GPL}}{1-{\eta }_{T}{V}_{GPL}}{E}_{m}\right]$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, O., Rash-Ahmadi, S. Geometrically nonlinear post-buckling of advanced porous nanocomposite lying on elastic foundation in hygrothermal environment. Acta Mech 234, 2725–2743 (2023). https://doi.org/10.1007/s00707-023-03516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03516-3

Navigation