Skip to main content
Log in

Thermoelastic response of laminated plates considering interfacial conditions and cracks based on peridynamics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The interface thermoelastic behavior of multi-layered structures under severe loads is a particularly important issue. Different from the previous generalized thermoelastic model, the Dual-Phase-Lag generalized thermoelastic model considering interface conditions is reestablished based on peridynamics in this manuscript. The model inherits the nonlocality of peridynamics, captures the thermal barrier at the interface, and can better deal with the discontinuous behavior at the interface. The monolithic algorithm is used for numerical model validation that is a sandwich plate subjected to thermal shock and subsequent calculation. On this basis, the influence of parameters, such as the horizon size, temperature gradient relaxation time, on the thermoelastic response behavior is studied. The thermoelastic responses with cracks and crack propagation at the interface were also carried out. It helps to better understand the effect of interfacial cracks in laminated plate subjected to thermal shocks. Finally, the analysis results are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Alagappan, P., Rajagopal, K.R., Srinivasa, A.R.: Wave propagation due to impact through layered polymer composites. Compos. Struct. 115, 1–11 (2014). https://doi.org/10.1016/j.compstruct.2014.03.037

    Article  Google Scholar 

  2. Hosseini-Tehrani, P., Eslami, M.R., Shojaeefard, M.H.: Generalized thermoelastic analysis of layer interface excited by pulsed laser heating. Eng. Anal. Bound. Elem. 27(9), 863–869 (2003). https://doi.org/10.1016/s0955-7997(03)00069-9

    Article  MATH  Google Scholar 

  3. Khanna, A., Kotousov, A.: Stress analysis of a crack in a fiber-reinforced layered composite. Compos. Struct. 118, 139–148 (2014). https://doi.org/10.1016/j.compstruct.2014.07.024

    Article  Google Scholar 

  4. Liu, Y., Mioduchowski, A., Ru, C.Q.: Effect of imperfect interface on thermal stresses-assisted matrix cracking in fiber composites. J. Therm. Stress. 25(6), 585–599 (2002). https://doi.org/10.1080/01495730290074315

    Article  Google Scholar 

  5. Cheng, Z.Q., Batra, R.C.: Thermal effects on laminated composite shells containing interfacial imperfections. Compos. Struct. 52(1), 3–11 (2001). https://doi.org/10.1016/s0263-8223(00)00197-5

    Article  Google Scholar 

  6. Duschlbauer, D., Pettermann, H.E., Böhm, H.J.: Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface. J. Appl. Phys. 94(3), 1539–1549 (2003). https://doi.org/10.1063/1.1587886

    Article  Google Scholar 

  7. Biot, M.A.: Thermoelasticity and Irreversible Thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956). https://doi.org/10.1063/1.1722351

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, C., Barber, J.R.: Stability of thermoelastic contact of two layers of dissimilar materials. J. Therm. Stress. 20(2), 169–184 (1997). https://doi.org/10.1080/01495739708956097

    Article  MathSciNet  Google Scholar 

  9. Heuer, R., Ziegler, F.: Thermoelastic stability of layered shallow shells. Int. J. Solids. Struct. 41(8), 2111–2120 (2004). https://doi.org/10.1016/j.ijsolstr.2003.11.032

    Article  MATH  Google Scholar 

  10. Hrylits’kyi, D.V., Kul’chyts’kyi-Zhygailo, R.D.: Plane contact thermoelasticity problem for a two-layer circular hollow cylinder with heat generation. Mater. Sci. 30(6), 636–642 (1995). https://doi.org/10.1007/bf00558899

    Article  Google Scholar 

  11. Barber, J.L., Hector, L.G.: Thermoelastic contact problems for the layer. J. Appl. Mech-T ASME 66(3), 806–808 (1999). https://doi.org/10.1115/1.2791759

    Article  Google Scholar 

  12. Wu, X., Jiang, C., Song, F., et al.: Size effect of thermal shock crack patterns in ceramics and numerical predictions. J. Eur. Ceram. Soc. 35(4), 1263–1271 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.10.032

    Article  Google Scholar 

  13. Li, J., Song, F., Jiang, C.: A non-local approach to crack process modeling in ceramic materials subjected to thermal shock. Eng. Fract. Mech. 133, 85–98 (2015). https://doi.org/10.1016/j.engfracmech.2014.11.007

    Article  Google Scholar 

  14. Yu, Y.J.: On Nonclassical Thermoelasticity at Micro/Nano Scale: Theoretical Formulation and Applications. Xi’an Jiaotong University, Xian (2016)

  15. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  MATH  Google Scholar 

  16. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  17. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf 117(1), 8–16 (1995). https://doi.org/10.1115/1.2822329

    Article  Google Scholar 

  18. Majchrzak, E., Mochnacki, B.: Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of FDM. Int. J. Therm. Sci. 133, 240–251 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.07.030

    Article  Google Scholar 

  19. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992). https://doi.org/10.1080/01495739208946136

    Article  MathSciNet  Google Scholar 

  20. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993). https://doi.org/10.1007/bf00044969

    Article  MathSciNet  MATH  Google Scholar 

  21. Choudhuri, S.K.R.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007). https://doi.org/10.1080/01495730601130919

    Article  Google Scholar 

  22. Cetinkaya, C., Li, C.: Propagation and localization of longitudinal thermoelastic waves in layered structures. J. Vib. Acoust. 122(3), 263–271 (2000). https://doi.org/10.1115/1.1303002

    Article  Google Scholar 

  23. Yu, J., Wu, B., He, C.: Guided thermoelastic wave propagation in layered plates without energy dissipation. Acta. Mech. Solida Sin. 24(2), 135–143 (2011). https://doi.org/10.1016/s0894-9166(11)60015-3

    Article  Google Scholar 

  24. Verma, K.L.: On the propagation of waves in layered anisotropic media in generalized thermoelasticity. Int. J. Eng. Sci. 40(18), 2077–2096 (2002). https://doi.org/10.1016/s0020-7225(02)00030-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Frankel, J.I., Vick, B., Özisik, M.N.: General formulation and analysis of hyperbolic heat conduction in composite media. Int. J. Heat Mass Transf. 30(7), 1293–1305 (1987). https://doi.org/10.1016/0017-9310(87)90162-1

    Article  MATH  Google Scholar 

  26. El-Bary, A.A., Youssef, H.M.: Thermal shock problem for one dimensional generalized thermoelastic layered composite material. Math. Comput. Appl. 11(2), 103–110 (2006). https://doi.org/10.3390/mca11020103

    Article  MATH  Google Scholar 

  27. Hosseini Zad, S.K., Komeili, A., Eslami, M.R., et al.: Classical and generalized coupled thermoelasticity analysis in one-dimensional layered media. Arch. Appl. Mech. 82(2), 267–282 (2011). https://doi.org/10.1007/s00419-011-0555-7

    Article  MATH  Google Scholar 

  28. Xue, Z.N., Yu, Y.J., Tian, X.G.: Transient responses of bi-layered structure based on generalized thermoelasticity: interfacial conditions. Int. J. Mech. Sci. 99, 179–186 (2015). https://doi.org/10.1016/j.ijmecsci.2015.05.016

    Article  Google Scholar 

  29. Xiong, Ql., Tian, Xg., Shen, Yp., et al.: Thermoelastic behavior of interface of composite plate under thermal shock. Chin. J. Theor. Appl. Mech. 43(03), 630–634 (2011). https://doi.org/10.6052/0459-1879-2011-3-lxxb2010-284

    Article  Google Scholar 

  30. Al-Nimr, M.A., Naji, M., Abdallah, R.I.: Thermal behavior of a multi-layered thin slab carrying periodic signals under the effect of the dual-phase-lag heat conduction model. Int. J. Thermophys. 25(3), 949–966 (2004). https://doi.org/10.1023/B:IJOT.0000034247.32646.d4

    Article  Google Scholar 

  31. Hatami-Marbini, H., Shodja, H.M.: On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces. Int. J. Solids. Struct. 45(22–23), 5831–5843 (2008). https://doi.org/10.1016/j.ijsolstr.2008.06.018

    Article  MATH  Google Scholar 

  32. Duan, H.L., Karihaloo, B.L.: Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys. Rev. B. (2007). https://doi.org/10.1103/physrevb.75.064206

    Article  Google Scholar 

  33. Erdogan, M., Erkan, O.: Peridynamic Theory and Its Applications. Springer, New York (2014)

  34. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids. 48(1), 175–209 (2000). https://doi.org/10.1016/s0022-5096(99)00029-0

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Zhou, X., Zhang, T.: Size effect of thermal shock crack patterns in ceramics: insights from a nonlocal numerical approach. Mech. Mater. (2019). https://doi.org/10.1016/j.mechmat.2019.103133

    Article  Google Scholar 

  36. Tan, Y., Liu, Q., Zhang, L., et al.: Peridynamics model with surface correction near insulated cracks for transient heat conduction in functionally graded materials. Int. J. Rock. Mech. Min. Sci. (2020). https://doi.org/10.3390/ma13061340

    Article  Google Scholar 

  37. Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transfer. 53(19–20), 4047–4059 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.024

    Article  MATH  Google Scholar 

  38. Bobaru, F., Duangpanya, M.: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231(7), 2764–2785 (2012). https://doi.org/10.1016/j.jcp.2011.12.017

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Y.T., Zhou, X.P.: Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes. Int. J. Rock. Mech. Min. Sci. 117, 31–48 (2019). https://doi.org/10.1016/j.ijrmms.2019.03.007

    Article  Google Scholar 

  40. Zhao, T., Shen, Yx.: An embedded discontinuity peridynamic model for nonlocal heat conduction with interfacial thermal resistance. Int. J. Heat Mass Transf. (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121195

    Article  Google Scholar 

  41. Wang, Lj.: Research on Some Basic Problems of Spatiotemporal Non-local Elastility. Peking University, Beijing (2020)

    Google Scholar 

  42. Oterkus, S., Madenci, E., Agwai, A.: Peridynamic thermal diffusion. J. Comput. Phys. 265, 71–96 (2014). https://doi.org/10.1016/j.jcp.2014.01.027

    Article  MathSciNet  MATH  Google Scholar 

  43. Xue, T., Zhang, X., Tamma, K.K.: A two-field state-based Peridynamic theory for thermal contact problems. J. Comput. Phys. 374, 1180–1195 (2018). https://doi.org/10.1016/j.jcp.2018.08.014

    Article  MathSciNet  MATH  Google Scholar 

  44. Silling, S.A., Lehoucq,, R.B..: Peridynamic theory of solid mechanics. Adv Appl Mech. 44, 73–168 (2010). https://doi.org/10.1016/S0065-2156(10)44002-8 (2010)

  45. Nowinski, J.: Theory of thermoelasticity with applications. Springer, Dordrecht (1978)

  46. Gerstle, W., Silling, S., Read, D., et al.: Peridynamic simulation of electrmigration. Comput. Mater. Contin. 8(2), 75–92 (2008)

    Google Scholar 

  47. Yvonnet, J., He, Q.C., Zhu, Q.Z., et al.: A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput. Mater. Sci. 50(4), 1220–1224 (2011). https://doi.org/10.1016/j.commatsci.2010.02.040

    Article  Google Scholar 

  48. Silling, S.A.: Linearized theory of peridynamic states. SAND2009-2458(2009)

  49. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005). https://doi.org/10.1016/j.compstruc.2004.11.026

    Article  Google Scholar 

  50. Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93(1), 13–37 (2008). https://doi.org/10.1007/s10659-008-9163-3

    Article  MathSciNet  MATH  Google Scholar 

  51. Lehoucq, R., Silling, S.: Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids. 56(4), 1566–1577 (2008). https://doi.org/10.1016/j.jmps.2007.08.004

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, J., Li, S., Lai, X., et al.: Peridynamic stress is the static first Piola-Kirchhoff Virial stress. Int. J. Solids Struct. 69, 322 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111478

    Article  Google Scholar 

  53. Armero, F., Simo, J.: A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. Farhat, C., Park, K.C., Dubois-Pelerin, Y.: An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comput. Methods. Appl. Mech. Eng. 85(3), 349–365 (1991). https://doi.org/10.1016/0045-7825(91)90102-c

    Article  MATH  Google Scholar 

  55. Liu, W.K., Chang, H.G.: A note on numerical analysis of dynamic coupled thermoelasticity. J. Appl. Mech. 52(2), 483–485 (1985). https://doi.org/10.1115/1.3169075

    Article  Google Scholar 

  56. Yu, Y.J., Li, C.-L., Xue, Z.-N., et al.: The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale. Phys. Lett. A. 380(1–2), 255–261 (2016). https://doi.org/10.1016/j.physleta.2015.09.030

    Article  Google Scholar 

  57. Qiu, T.Q., Tien, C.L.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35(3), 719–726 (1992). https://doi.org/10.1016/0017-9310(92)90131-b

    Article  Google Scholar 

  58. Tzou, D.Y.: Reflection and refraction of thermal waves from a surface or an interface between dissimilar materials. Int. J. Heat Mass Transf. 36(2), 401–410 (1993). https://doi.org/10.1016/0017-9310(93)80016-n

    Article  MATH  Google Scholar 

Download references

Funding

This study was funded by Key Programme (Grant No. 11732007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogeng Tian.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest. “I confirm all patient/personal identifiers have been removed or disguised so the patient/person(s) described are not identifiable and cannot be identified through the details of the story.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhao, Y., Ma, X. et al. Thermoelastic response of laminated plates considering interfacial conditions and cracks based on peridynamics. Acta Mech 234, 2179–2203 (2023). https://doi.org/10.1007/s00707-023-03493-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03493-7

Navigation