Skip to main content
Log in

Multiscale modeling of CNT-based nanocomposites with soft/hard interphase effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Interphase effects are very crucial to the overall elasto-plastic responses of carbon nanotubes (CNTs)-reinforced nanocomposites. This work focuses on an investigation of the effect of soft/hard interphase effects on the macroscopic elasto-plastic response of nanocomposites with mono-/polydisperse CNTs. On the base of interphase model, field fluctuation method and second-order stress moment, a multiscale framework is proposed. To verify the validity of the developed model, comparative analyses against experimental data are presented. Subsequently, detailed quantitative evaluations of parameters to reveal the effects of the major micromechanical variables on the effective elasto-plastic responses of CNTs-reinforced nanocomposites are implemented. Results reveal that the overall elasto-plastic responses of CNT-based nanocomposites are strongly dependent on the volume fraction and stiffness of soft/hard interphase, as well as geometrical size factor, aspect ratio and size distribution of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphic carbon. Nature 354, 56–58 (1991)

    Google Scholar 

  2. Rathinavel, S., Priyadharshini, K., Panda, D.: A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 268, 115095 (2021)

    Google Scholar 

  3. Zare, Y., Rhee, K.Y., Park, S.J.: A model for the tensile modulus of polymer nanocomposites assuming carbon nanotube networks and interphase zones. Acta Mech. 231, 35–45 (2020)

    Google Scholar 

  4. Hu, Y.G., Li, Y.F., Han, J., Hu, C.P., Chen, Z.H., Gu, S.T.: Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model. Acta Mech. 230, 2771–2782 (2019)

    MathSciNet  Google Scholar 

  5. Ma, K., Liu, Z.Y., Liu, K., Chen, X.G., Xiao, B.L., Ma, Z.Y.: Structure optimization for improving the strength and ductility of heterogeneous carbon nanotube/al-cu-mg composites. Carbon 178, 190–201 (2021)

    Google Scholar 

  6. Saharan, P., Sharma, A.K., Kumar, V., Kaushal, I.: Multifunctional CNT supported metal doped MnO2 composite for adsorptive removal of anionic dye and thiourea sensing. Mater. Chem. Phys. 221, 239–249 (2018)

    Google Scholar 

  7. Okolo, C., Rafique, R., Iqbal, S.S., Subhani, T., Saharudin, M.S., Bhat, B.R., Inam, F.: Customizable ceramic nanocomposites using carbon nanotubes. Molecules 24, 3176 (2019)

    Google Scholar 

  8. Ruan, Y.F., Han, B., Yu, X., Wei, Z., Wang, D.: Carbon nanotubes reinforced reactive powder concrete. Compos. A 112, 371–382 (2018)

    Google Scholar 

  9. Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M., Sahoo, R.: Estimation of carbon nanotubes and their applications as reinforcing composite materials—an engineering review. Compos. Struct. 272, 114234 (2021)

    Google Scholar 

  10. Dinzart, F., Sabar, H.: Electroelastic ellipsoidal inclusion with imperfect interface and its application to piezoelectric composite materials. Int. J. Solids Struct. 136, 241–249 (2018)

    Google Scholar 

  11. Kar, S., Kumari, P.: Three-dimensional analytical solution of arbitrarily supported cylindrical panels with weak interfaces using the extended Kantorovich method. Compos. Struct. 236, 111802 (2020)

    Google Scholar 

  12. Wang, J.B., Yan, P., Dong, L.T., Atluri, S.N.: Direct numerical simulation of complex nano-structured composites, considering interface stretching and bending effects, using nano-computational grains. Int. J. Numer. Methods Eng. 122, 1476–1492 (2021)

    MathSciNet  Google Scholar 

  13. Saeb, S., Firooz, S., Steinmann, P., Javili, A.: Generalized interfaces via weighted averages for application to graded interphases at large deformations. J. Mech. Phys. Solids 149, 104234 (2021)

    MathSciNet  Google Scholar 

  14. Yang, S., Yu, S., Ryu, J., Cho, J.M., Kyoung, W., Han, D.S., Cho, M.: Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. Int. J. Plast. 41, 124–146 (2013)

    Google Scholar 

  15. Nazarenko, L., Stolarski, H., Altenbach, H.: A statistical interphase damage model of random particulate composites. Int. J. Plast. 116, 118–142 (2019)

    Google Scholar 

  16. Sun, Y., Hu, Y.F., Liu, M.B.: Elasto-plastic behavior of graphene reinforced nanocomposites with hard/soft interface effects. Mater. Des. 199, 109421 (2021)

    Google Scholar 

  17. Sun, Y., Li, A., Hu, Y.F., Wang, X.H., Liu, M.B.: Simultaneously enhanced strength-plasticity of graphene/metal nanocomposites via interfacial microstructure regulation. Int. J. Plast. 148, 103143 (2022)

    Google Scholar 

  18. Herve, E., Zaoui, A.: n-Layered inclusion based micromechanical modelling. Int. J. Eng. Sci. 31, 1–10 (1993)

    MATH  Google Scholar 

  19. Lipinski, P., Barhdadi, E.H., Cherkaoui, M.: Micromechanical modelling of an arbitrary ellipsoidal multi-coated inclusion. Philos. Mag. 86, 1305–1326 (2006)

    Google Scholar 

  20. Cherkaoui, M., Sabar, H., Berveiller, M.: Elastic composites with coated reinforcements: a micromechanical approach for nonhomothetic topology. Int. J. Eng. Sci. 33(6), 829–843 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Aboutajeddine, A., Neale, K.W.: The double-inclusion model: a new formulation and new estimates. Mech. Mater. 37, 331–341 (2005)

    Google Scholar 

  22. Berbenni, S., Cherkaoui, M.: Homogenization of multicoated inclusion-reinforced linear elastic composites with eigenstrains: application to thermoelastic behavior. Philos. Mag. 90, 3003–3026 (2010)

    Google Scholar 

  23. Bonfoh, N., Hounkpati, V., Sabar, H.: New micromechanical approach of the coated inclusion problem: exact solution and applications. Comput. Mater. Sci. 62, 175–183 (2012)

    Google Scholar 

  24. Xu, W.X., Chen, H.S.: Analytical and modeling investigations of volume fraction of interfacial layers around ellipsoidal particles in multiphase materials. Modell. Simul. Mater. Sci. Eng. 21, 015005 (2013)

    Google Scholar 

  25. Xu, W.X., Wu, Y., Jia, M.K.: Elastic dependence of particle-reinforced composites on anisotropic particle geometries and reinforced/weak interphase microstructures at nano- and micro-scales. Compos. Struct. 203, 124–131 (2018)

    Google Scholar 

  26. Xu, W.X., Wu, F., Jiao, Y., Liu, M.J.: A general micromechanical framework of effective moduli for the design of nonspherical nano- and micro-particle reinforced composites with interface properties. Mater. Des. 127, 162–172 (2017)

    Google Scholar 

  27. Jiang, J.Y., Wang, F.J., Guo, W.Q., Xu, W.X.: Hydraulic transport properties of unsaturated cementitious composites with spheroidal aggregates. Int. J. Mech. Sci. 212, 106845 (2021)

    Google Scholar 

  28. Guo, W.Q., Jiang, J.Y., Han, F.Y., Xu, W.X.: A micromechanical framework for thermo-elastic properties of multiphase cementitious composites with different saturation. Int. J. Mech. Sci. 224, 107313 (2022)

    Google Scholar 

  29. García-Macías, E., Rodríguez-Tembleque, L., Sáez, A.: MWCNT/epoxy strip-like sensors for buckling detection in beam-like Structures. Thin-Walled Struct. 133, 27–41 (2018)

    Google Scholar 

  30. Barai, P., Weng, G.J.: A theory of plasticity for carbon nanotube reinforced composites. Int. J. Plast. 27, 539–559 (2011)

    MATH  Google Scholar 

  31. Bobeth, M., Diener, G.: Field fluctuations in multicomponent mixtures. J. Mech. Phys. Solids 34(1), 1–17 (1986)

    MATH  Google Scholar 

  32. Yun, G.J., Zhu, F.Y., Lim, H.J., Choi, H.: A damage plasticity constitutive model for wavy CNT nanocomposites by incremental Mori–Tanaka approach. Compos. Struct. 258, 113178 (2021)

    Google Scholar 

  33. Karimi, M., Ghajar, R., Montazeri, A.: A novel interface-treated micromechanics approach for accurate and efficient modeling of cnt/polymer composites. Compos. Struct. 201, 528–539 (2018)

    Google Scholar 

  34. Paran, S., Sahraeian, R., Naderi, G., Rashidi, A.: Nonlinear elastoplastic behavior induced by multiwalled carbon nanotubes in the compatibilized low density polyethylene/poly(methyl hydrogen siloxane)-grafted perlite nanocomposites. Mech. Mater. 136, 103066 (2019)

    Google Scholar 

  35. Hu, G.K.: A method of plasticity for general aligned spheroidal void or fiber reinforced composites. Int. J. Plast. 12, 439–449 (1996)

    MATH  Google Scholar 

  36. Qiu, Y.P., Weng, G.J.: An energy approach to the plasticity of a two-phase composite containing aligned inclusions. J. Appl. Mech. 62(4), 1039–1046 (1995)

    MATH  Google Scholar 

  37. Zhang, W.X., Wang, T.J., Chen, X.: Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. Int. J. Plast. 26, 957–975 (2010)

    MATH  Google Scholar 

  38. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Google Scholar 

  39. Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  40. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  41. Xu, W.X., Ma, H.F., Ji, S.Y., Chen, H.S.: Analytical effective elastic properties of particulate composites with soft interfaces around anisotropic particles. Compos. Sci. Technol. 129, 10–18 (2016)

    Google Scholar 

  42. Beddow, J.K.: Particle Characterization in Technology: Volume II Morphological Analysis. CRC Press (2018)

    Google Scholar 

  43. Xu, W.X., Zhang, D.Y., Lan, P., Jiao, Y.: Multiple-inclusion model for the transport properties of porous composites considering coupled effects of pores and interphase around spheroidal particles. Int. J. Mech. Sci. 150, 610–616 (2019)

    Google Scholar 

  44. Devore, J.L.: Probability and Statistics for Engineering and the Sciences. Cengage Learning Press (2011)

    Google Scholar 

  45. Ponte, C.P.: The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39(1), 45–71 (1991)

    MathSciNet  MATH  Google Scholar 

  46. Chaboche, J.L., Kanoute, P.: Sur les approximations isotrope et anisotrope de 1’ operateur tangent pour les methodes tangentes incrementale et affine. C.R. Mec. 331, 857–864 (2003)

    MATH  Google Scholar 

  47. Gonzalez, C., Llorca, J.: A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage. J. Mech. Phys. Solids 48, 675–692 (2000)

    MATH  Google Scholar 

  48. Qiu, Y.P., Weng, G.J.: A theory of plasticity for porous materials and particle-reinforced composites. J. Appl. Mech. 59(2), 261–268 (1992)

    MATH  Google Scholar 

  49. He, C.N., Zhao, N.Q., Shi, C.S., Song, S.Z.: Mechanical properties and microstructures of carbon nanotube-reinforced al matrix composite fabricated by in situ chemical vapor deposition. J. Alloys Compd. 487, 258–262 (2009)

    Google Scholar 

  50. Shen, L.X., Li, J.: Transversely isotropic elastic properties of multiwalled carbon nanotubes. Phys. Rev. B 71, 035412 (2005)

    Google Scholar 

  51. Bhuiyan, M.A., Pucha, R., Karevan, M., Kalaitzidou, K.: Tensile modulus of carbon nanotube/polypropylene composites-a computational study based on experimental characterization. Comput. Mater. Sci. 50, 2347–2353 (2011)

    Google Scholar 

  52. Park, J.G., Keum, D.H., Lee, Y.H.: Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95, 690–698 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11972285); the Natural Science Foundation of Shannxi Province (2021JQ-466); the Fundamental Research Funds of Shaanxi Key Laboratory of Artificially Structured Functional Materials and Devices (AFMD-KFJJ-21205); the Fund of the Science and Technology Innovation Team of Shaanxi (2022TD-61); and the Fund of the Youth Innovation Team of Shaanxi Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, M. Multiscale modeling of CNT-based nanocomposites with soft/hard interphase effects. Acta Mech 234, 2045–2058 (2023). https://doi.org/10.1007/s00707-023-03483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03483-9

Navigation