Skip to main content
Log in

Dynamic behavior of cylindrical shell with partial constrained viscoelastic layer damping under an impact load

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dynamics of the cylindrical shell with partial constraining layer damping are discussed in this paper (PCLD). The developed model includes the harmonic and transient regimes. In transient regime the cylindrical shell is impacted by a hammer. The governing equation is based on Lagrange equations and Galerkin assumed mode method. The impact is modeled with Heitkamper equation. The stiffness of viscoelastic layer is supposed to be complex and frequency independent. The governing equation is solved in the frequency domain using fast Fourier transform (FFT) and then converted back to time domain with inverse fast Fourier transform (IFFT). The model is validated with results available in the literature. The conclusions obtained are consolidated by finite elements simulations with ANSYS. Several simulations are performed to study the response of the cylinder with PCLD due to the impact. Furthermore, the influence of the patch characteristics and the contact time between hammer and structure are also studied. Interesting results which shed the light on some of the behavior of the cylinder during the first milliseconds are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Barkanov, E.: Transient response analysis of structures made from viscoelastic materials. Int. J. Numer. Methods Eng. 44(3), 393–403 (1999)

    Article  MATH  Google Scholar 

  2. Barkanov, E., Rikards, R., Holste, C., Täger, O.: Transient response of sandwich viscoelastic beams, plates, and shells under impulse loading. Mech. Compos. Mater. 36(3), 215–222 (2000)

    Article  Google Scholar 

  3. Khalfi, B., Ross, A.: Transient response of a plate with partial constrained viscoelastic layer damping. Int. J. Mech. Sci. 68, 304–312 (2013)

    Article  Google Scholar 

  4. Nayak, A., Shenoi, R., Moy, S.: Transient response of composite sandwich plates. Compos. Struct. 64(3–4), 249–267 (2004)

    Article  Google Scholar 

  5. Cao, Y., Zhong, R., Shao, D., Wang, Q., Guan, X.: Dynamic analysis of rectangular plate stiffened by any number of beams with different lengths and orientations. Shock Vib. (2019). https://doi.org/10.1155/2019/2364515

    Article  Google Scholar 

  6. Oh, I.-K.: Dynamic characteristics of cylindrical hybrid panels containing viscoelastic layer based on layerwise mechanics. Compos. B Eng. 38(2), 159–171 (2007)

    Article  Google Scholar 

  7. Han, X., Xu, D., Liu, G.: Transient responses in a functionally graded cylindrical shell to a point load. J. Sound Vib. 251(5), 783–805 (2002)

    Article  Google Scholar 

  8. Kandasamy, S., Singh, A.V.: Transient vibration analysis of open circular cylindrical shells. J. Vib. Acoust. 128(3), 366–374 (2006)

    Article  Google Scholar 

  9. Cao, X.-t, Zhang, Z.-y, Hua, H.-x: Free vibration of circular cylindrical shell with constrained layer damping. Appl. Math. Mech. 32, 495–506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duc, N.D., Quan, T.Q., Luat, V.D.: Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermo-electro-mechanical loads. Compos. Struct. 125, 29–40 (2015)

    Article  Google Scholar 

  11. Zheng, L., Qiu, Q., Wan, H., Zhang, D.: Damping analysis of multilayer passive constrained layer damping on cylindrical shell using transfer function method. J. Vib. Acoust. 136(3), 031001 (2014)

    Article  Google Scholar 

  12. Qiu, Q., Fang, Z., Wan, H., Zheng, L.: Transfer function method for frequency response and damping effect of multilayer PCLD on cylindrical shell. J. Phys. Conf. Ser. 448, 012006 (2013)

    Article  Google Scholar 

  13. Chen, L.-H., Huang, S.-C.: Vibration attenuation of a cylindrical shell with constrained layer damping strips treatment. Comput. Struct. 79(14), 1355–1362 (2001)

    Article  Google Scholar 

  14. Dai, L., Yang, T., Li, W., Du, J., Jin, G.: Dynamic analysis of circular cylindrical shells with general boundary conditions using modified fourier series method. J. Vib. Acoust. 134(4), 041004 (2012)

    Article  Google Scholar 

  15. Jin, G., Yang, C., Liu, Z., Gao, S., Zhang, C.: A unified method for the vibration and damping analysis of constrained layer damping cylindrical shells with arbitrary boundary conditions. Compos. Struct. 130, 124–142 (2015)

    Article  Google Scholar 

  16. Plattenburg, J., Dreyer, J.T., Singh, R.: A new analytical model for vibration of a cylindrical shell and cardboard liner with focus on interfacial distributed damping. Mech. Syst. Signal Process. 75, 176–195 (2016)

    Article  Google Scholar 

  17. Cai, C., HZ, K CHung and Z J Zhang,: Vibration analysis of a beam with an active constraining layer damping patch. Smart Mater. Struct. 15, 147–156 (2005). https://doi.org/10.1088/0964-1726/15/1/043

    Article  Google Scholar 

  18. Chen, Z., Wang, A., Qin, B., Wang, Q., Zhong, R.: Investigation on free vibration and transient response of functionally graded graphene platelets reinforced cylindrical shell resting on elastic foundation. Eur. Phys. J. Plus. 135(7), 1–34 (2020)

    Article  Google Scholar 

  19. Shi, D., Zha, S., Zhang, H., Wang, Q.: Free vibration analysis of the unified functionally graded shallow shell with general boundary conditions. Shock Vib (2017). https://doi.org/10.1155/2017/7025190

    Article  Google Scholar 

  20. Liu, T., Wang, A., Wang, Q., Qin, B.: Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions. Thin-Walled Struct. 148, 106580 (2020)

    Article  Google Scholar 

  21. Fazzolari, F.A., Viscoti, M., Dimitri, R., Tornabene, F.: 1D-Hierarchical Ritz and 2D-GDQ Formulations for the free vibration analysis of circular/elliptical cylindrical shells and beam structures. Compos. Struct. 258, 113338 (2021)

    Article  Google Scholar 

  22. Shahgholian-Ghahfarokhi, D., Rahimi, G., Zarei, M., Salehipour, H.: Free vibration analyses of composite sandwich cylindrical shells with grid cores: Experimental study and numerical simulation. Mech. Based Design Struct. Mach. 50(2), 1–20 (2020)

    Google Scholar 

  23. Heydarpour, Y., Mohammadzaheri, M., Ghodsi, M., Soltani, P., AlJahwari, F., Bahadur, I., et al.: Application of the hybrid DQ-Heaviside-NURBS method for dynamic analysis of FG-GPLRC cylindrical shells subjected to impulse load. Thin-Walled Struct. 155, 106914 (2020)

    Article  Google Scholar 

  24. Chen, G., Huo, H., Zhan, S., Yang, D.: Analytical stochastic responses of thin cylindrical shells under various stationary excitations. Int. J. Mech. Sci. 190, 106048 (2021)

    Article  Google Scholar 

  25. Zhang, D., Wu, Y., Lu, X., Zheng, L.: Topology optimization of constrained layer damping plates with frequency-and temperature-dependent viscoelastic core via parametric level set method. Mech. Adv. Mater. Struct. 29(1), 154–170 (2022)

    Article  Google Scholar 

  26. Sahu, N.K., Biswal, D.K., Joseph, S.V., Mohanty, S.C.: Vibration and damping analysis of doubly curved viscoelastic-FGM sandwich shell structures using FOSDT. Structures 26, 24–38 (2020)

    Article  Google Scholar 

  27. Abdoun, F., Azrar, L., Daya, E.: Damping and forced vibration analyses of viscoelastic shells. Int. J. Comput. Methods Eng. Sci. Mech. 11(2), 109–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Em, D., Potier-Ferry, M.: A shell finite element for viscoelastically damped sandwich structures. Revue Européenne des Eléments. 11(1), 39–56 (2002)

    Article  MATH  Google Scholar 

  29. Zhou, X., Yu, D., Shao, X., Zhang, S., Wang, S.: Research and applications of viscoelastic vibration damping materials: a review. Compos. Struct. 136, 460–480 (2016)

    Article  Google Scholar 

  30. Permoon, M.R., Farsadi, T.: Free vibration of three-layer sandwich plate with viscoelastic core modelled with fractional theory. Mech. Res. Commun. 116, 103766 (2021)

    Article  Google Scholar 

  31. Liu, B., Zhao, L., Ferreira, A., Xing, Y., Neves, A., Wang, J.: Analysis of viscoelastic sandwich laminates using a unified formulation and a differential quadrature hierarchical finite element method. Compos. B Eng. 110, 185–192 (2017)

    Article  Google Scholar 

  32. Khalfi, B., Ross, A.: Influence of partial constrained layer damping on the bending wave propagation in an impacted viscoelastic sandwich. Int. J. Solids Struct. 50(25–26), 4133–4144 (2013)

    Article  Google Scholar 

  33. Khalfi, B., Ross, A.: Transient and harmonic response of a sandwich with partial constrained layer damping: a parametric study. Compos. B Eng. 91, 44–55 (2016)

    Article  Google Scholar 

  34. Soedel, W., Qatu, M.S.: Vibrations of Shells and Plates. Acoustical Society of America; CRC Press, Boca Raton (2005)

    Google Scholar 

  35. Slanik, M.L., Nemes, J.A., Potvin, M.-J., Piedboeuf, J.-C.: Time domain finite element simulations of damped multilayered beams using a prony series representation. Mech. Time-Depend. Mater. 4(3), 211–230 (2000)

    Article  Google Scholar 

  36. Ghoreishy, M.H.R.: Determination of the parameters of the Prony series in hyper-viscoelastic material models using the finite element method. Mater. Des. 35, 791–797 (2012)

    Article  Google Scholar 

  37. Gibson, W.C., Smith, C.A., McTavish, D.J.: Implementation of the Golla-Hughes-McTavish (GHM) method for viscoelastic materials using MATLAB and NASTRAN. In: Smart Structures and Materials 1995: Passive Damping: International Society for Optics and Photonics. pp. 312–323 (1995)

  38. Karczmarzyk, S.: An Effective 2D Linear Elasticity Vibrational Model for Layered and Sandwich Clamped-Clamped Unidirectional Strips Sandwich Structures, pp. 577–586. Springer, Berlin (2005)

    Google Scholar 

  39. Balas, M.J.: The Galerkin method and feedback control of linear distributed parameter systems. J. Math. Anal. Appl. 91(2), 527–546 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kiani, K.: Large deformation of uniaxially loaded slender microbeams on the basis of modified couple stress theory: analytical solution and Galerkin-based method. Physica E 93, 301–312 (2017)

    Article  Google Scholar 

  41. Blais, J.F.: Application de l'holographie Acoustique en Champ Proche a l'etude du Rayonnement Transitoire de Plaques Soumises a des Impacts [MR48908]. Ecole Polytechnique, Montreal (2009)

  42. Granger, D., Ross, A.: Effects of partial constrained viscoelastic layer damping parameters on the initial transient response of impacted cantilever beams: experimental and numerical results. J. Sound Vib. 321(1–2), 45–64 (2009)

    Article  Google Scholar 

  43. Ramesh, T., Ganesan, N.: Finite element analysis of cylindrical shells with a constrained viscoelastic layer. J. Sound Vib. 172(3), 359–370 (1994)

    Article  MATH  Google Scholar 

  44. Chitariu, D.-F., Negoescu, F., Horodinca, M., Dumitras, C.-G., Dogan, G., Ilhan, M.: An experimental approach on beating in vibration due to rotational unbalance. Appl. Sci. 10(19), 6899 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boubaker Khalfi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfi, B., Nasraoui, M.T., Chakhari, J. et al. Dynamic behavior of cylindrical shell with partial constrained viscoelastic layer damping under an impact load. Acta Mech 234, 2125–2143 (2023). https://doi.org/10.1007/s00707-023-03481-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03481-x

Navigation