Skip to main content
Log in

Design of lattice materials with isotropic stiffness through combination of two complementary cubic lattice configurations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Lattice materials possess excellent mechanical properties such as light weight, high specific stiffness and high energy absorption capacity. However, the commonly used lattice materials inspired by Bravais lattice often give rise to property anisotropy that is not desirable for engineering application such as bone implants. For this sake, a design methodology for isotropic stiffness is proposed in this paper. Firstly, an efficient theoretical method for calculating the elastic matrices of lattice materials was presented. The method is based on Euler–Bernoulli beam theory and the assumption of affine deformation of cell vertices applicable to cubic truss-lattice materials. The theoretical approach was validated by comparing with the finite element simulations. Utilizing the validated theoretical method, and by properly combining the lattice configurations with complementary stiffness along different directions, an elastic isotropic lattice material can be obtained. A few examples are presented to demonstrate the effectiveness and adaptability of the proposed design strategy by permutating the combinations of different classic lattices. The method proposed in this paper can provide a new approach in the design of lattice materials with excellent anisotropy control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ashby, M.: Materials–a brief history. Philos. Mag. Lett. 88, 749–755 (2009). https://doi.org/10.1080/09500830802047056

    Article  Google Scholar 

  2. Ashby, M.F.: The properties of foams and lattices. Philos. Trans. A Math. Phys Eng. Sci. 364, 15–30 (2006). https://doi.org/10.1098/rsta.2005.1678

    Article  MathSciNet  Google Scholar 

  3. Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X., Valdevit, L.: Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. (2017). https://doi.org/10.1002/adma.201701850

    Article  Google Scholar 

  4. Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. (2001). https://doi.org/10.1016/S0079-6425(00)00016-5

    Article  Google Scholar 

  5. Fleck, N.A., Deshpande, V.S., Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phy. 466, 2495–2516 (2010). https://doi.org/10.1098/rspa.2010.0215

    Article  Google Scholar 

  6. Yeo, S.J., Oh, M.J., Yoo, P.J.: Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 31, e1803670 (2019). https://doi.org/10.1002/adma.201803670

    Article  Google Scholar 

  7. Yu, X., Zhou, J., Liang, H., Jiang, Z., Wu, L.: Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog. Mater. Sci. 94, 114–173 (2018). https://doi.org/10.1016/j.pmatsci.2017.12.003

    Article  Google Scholar 

  8. Dayyani, I., Shaw, A.D., Saavedra Flores, E.L., Friswell, M.I.: The mechanics of composite corrugated structures: a review with applications in morphing aircraft. Compos. Struct. 133, 358–380 (2015). https://doi.org/10.1016/j.compstruct.2015.07.099

    Article  Google Scholar 

  9. Feng, J., Liu, B., Lin, Z., Fu, J.: Isotropic octet-truss lattice structure design and anisotropy control strategies for implant application. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.109595

    Article  Google Scholar 

  10. Lohmuller, P., Favre, J., Kenzari, S., Piotrowski, B., Peltier, L., Laheurte, P.: Architectural effect on 3D elastic properties and anisotropy of cubic lattice structures. Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.108059

    Article  Google Scholar 

  11. Deshpande, V.S., Ashby, M.F., Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035–1040 (2001). https://doi.org/10.1016/S1359-6454(00)00379-7

    Article  Google Scholar 

  12. Zhu, H.X., Knott, J.F., Mills, N.J.: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J. Mech. Phys. Solids 45, 319–343 (1997). https://doi.org/10.1016/s0022-5096(96)00090-7

    Article  Google Scholar 

  13. Ushijima, K., Cantwell, W.J., Mines, R.A.W., Tsopanos, S., Smith, M.: An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandw. Struct. Mater. 13, 303–329 (2010). https://doi.org/10.1177/1099636210380997

    Article  Google Scholar 

  14. Deng, J.Q., Li, X., Liu, Z.F., Wang, Z.H., Li, S.Q.: Compression behavior of FCC- and BCB-architected materials: theoretical and numerical analysis. Acta Mech. 232, 4133–4150 (2021). https://doi.org/10.1007/s00707-021-02953-2

    Article  MATH  Google Scholar 

  15. Chai, Y., Li, F., Zhang, C.: A new method for suppressing nonlinear flutter and thermal buckling of composite lattice sandwich beams. Acta Mech. 233, 121–136 (2022). https://doi.org/10.1007/s00707-021-03107-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001). https://doi.org/10.1016/S0022-5096(01)00010-2

    Article  MATH  Google Scholar 

  17. Fan, H., Yang, W.: An equivalent continuum method of lattice structures. Acta Mech. Solida Sin. 19, 103–113 (2006). https://doi.org/10.1007/s10338-006-0612-x

    Article  Google Scholar 

  18. Mohr, D.: Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int. J. Solids Struct. 42, 3235–3260 (2005). https://doi.org/10.1016/j.ijsolstr.2004.10.032

    Article  MATH  Google Scholar 

  19. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54, 1235–1260 (2002). https://doi.org/10.1002/nme.541

    Article  MATH  Google Scholar 

  20. Norris, A.N.: A differential scheme for the effective moduli of composites. Mech. Mater. 4, 1–16 (1985). https://doi.org/10.1016/0167-6636(85)90002-X

    Article  Google Scholar 

  21. Vigliotti, A., Pasini, D.: Stiffness and strength of tridimensional periodic lattices. Comput. Methods Appl. Mech. Eng. 229–232, 27–43 (2012). https://doi.org/10.1016/j.cma.2012.03.018

    Article  Google Scholar 

  22. Xu, S., Shen, J., Zhou, S., Huang, X., Xie, Y.M.: Design of lattice structures with controlled anisotropy. Mater. Des. 93, 443–447 (2016). https://doi.org/10.1016/j.matdes.2016.01.007

    Article  Google Scholar 

  23. Berger, J.B., Wadley, H.N., McMeeking, R.M.: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017). https://doi.org/10.1038/nature21075

    Article  Google Scholar 

  24. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963). https://doi.org/10.1016/0022-5096(63)90060-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342 (1962). https://doi.org/10.1016/0022-5096(62)90004-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Tancogne-Dejean, T., Mohr, D.: Elastically-isotropic truss lattice materials of reduced plastic anisotropy. Int. J. Solids Struct. 138, 24–39 (2018). https://doi.org/10.1016/j.ijsolstr.2017.12.025

    Article  Google Scholar 

  27. Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M.B., Bonatti, C., Mohr, D.: 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Adv. Mater. 30, e1803334 (2018). https://doi.org/10.1002/adma.201803334

    Article  Google Scholar 

  28. Wang, S., Ma, Y., Deng, Z., Wu, X.: Two elastically equivalent compound truss lattice materials with controllable anisotropic mechanical properties. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2021.106879

    Article  Google Scholar 

  29. Wang, Y., Sigmund, O.: Quasiperiodic mechanical metamaterials with extreme isotropic stiffness. Extrem. Mech. Lett. (2020). https://doi.org/10.1016/j.eml.2019.100596

    Article  Google Scholar 

  30. Heidenreich, J.N., Gorji, M.B., Tancogne-Dejean, T., Mohr, D.: Design of isotropic porous plates for use in hierarchical plate-lattices. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.110218

    Article  Google Scholar 

  31. Asaro, R., Lubarda, V.: Mechanics of Solids and Materials. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  32. Wang, P., Yang, F., Li, P., Zheng, B., Fan, H.: Design and additive manufacturing of a modified face-centered cubic lattice with enhanced energy absorption capability. Extrem. Mech. Lett. (2021). https://doi.org/10.1016/j.eml.2021.101358

    Article  Google Scholar 

  33. Crupi, V., Kara, E., Epasto, G., Guglielmino, E., Aykul, H.: Static behavior of lattice structures produced via direct metal laser sintering technology. Mater. Des. 135, 246–256 (2017). https://doi.org/10.1016/j.matdes.2017.09.003

    Article  Google Scholar 

  34. Liu, L., Kamm, P., Garcia-Moreno, F., Banhart, J., Pasini, D.: Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by selective laser melting. J. Mech. Phys. Solids 107, 160–184 (2017). https://doi.org/10.1016/j.jmps.2017.07.003

    Article  MathSciNet  Google Scholar 

  35. Lei, H., Li, C., Meng, J., Zhou, H., Liu, Y., Zhang, X., Wang, P., Fang, D.: Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis. Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.107685

    Article  Google Scholar 

  36. Bian, Y., Yang, F., Li, P., Wang, P., Li, W., Fan, H.: Energy absorption properties of macro triclinic lattice structures with twin boundaries inspired by microstructure of feldspar twinning crystals. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114103

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (KFJJ22-08M), State Key Laboratory of Mechanics and Control of Mechanical Structures with (MCMS-E-0221G02), National Natural Science Foundation of China (11972261), and Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Yang or Lihua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yang, F., Bian, Y. et al. Design of lattice materials with isotropic stiffness through combination of two complementary cubic lattice configurations. Acta Mech 234, 1843–1856 (2023). https://doi.org/10.1007/s00707-023-03480-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03480-y

Navigation