Skip to main content
Log in

A class of moving boundary problems with a source term: application of a reciprocal transformation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We consider a new Stefan-type problem for the classical heat equation with a latent heat and phase-change temperature depending of the variable time. We prove the equivalence of this Stefan problem with a class of boundary value problems for the nonlinear canonical evolution equation involving a source term with two free boundaries. This equivalence is obtained by applying a reduction to a Burgers equation and a reciprocal-type transformations. Moreover, for a particular case, we obtain a unique explicit solution for the two different problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ablowitz, M.J., De Lillo, S.: Solutions of a Burgers-Stefan problem. Phys. Lett. A. 271, 273–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ablowitz, M.J., De Lillo, S.: On a Burgers-Stefan problem. Nonlinearity 13, 471–478 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bollati, J., Tarzia, D.A.: One-phase Stefan problem with a latent heat depending on the position of the free boundary and its rate of change. Electron. J. Differ. Equa. 2018(10), 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bollati, J., Tarzia, D.A.: Explicit solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face. Commun. Appl. Anal. 22(2), 309–332 (2018)

    MATH  Google Scholar 

  5. Bollati, J., Tarzia, D.A.: Exact solutions for a two-phase Stefan problem with variable latent heat and a convective boundary conditions at the fixed face. Zeitschrift fûr Angewandte Mathematik und Physik-ZAMP 69(38), 1–15 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Bollati, J., Tarzia, D.A.: One-phase Stefan-like problems with a latent heat depending on the position and velocity of the free boundary, and with Neumann or Robin boundary conditions at the fixed face. Math. Probl. Eng. 2018, 1–11 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollati, J., Tarzia, D.A.: Approximate solutions to one-phase Stefan-like problems with a space-dependent latent heat. Eur. J. Appl. Math. 32, 337–369 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Briozzo A.C., Tarzia D.A.: On the paper D. Burini -S. De Lillo-G. Fioriti, Acta Mech., 229 No. 10 , (2018)4215-4228, Acta Mechanica 231 (1) , 391-393 (2020)

  9. Briozzo, A.C., Tarzia, D.A.: A free boundary problem for a diffusion-convection equation. Int. J. Non-Linear Mech. 120(103394), 1–9 (2020)

    Google Scholar 

  10. Broadbridge, P., Rogers, C.: On a nonlinear reaction-diffusion boundary value problem: application of a Lie-Backlund symmetry. J. Australian Math. Soc. Series B 34, 318–332 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calogero, F., De Lillo, S.: Flux infiltration into soils: analytic solutions. J. Phys. A: Math. Gen. 27, L137 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crank, J.: Free and moving boundary value problems. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  13. Elliot, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, vol. 59. Pitman, New York (1982)

  14. Friedman, A.: Variational principles and free boundary problems. Wiley, New York (1982)

    MATH  Google Scholar 

  15. Fokas, A.S., Yortsos, Y.C.: On the exactly soluble equation \(S_t =[(\beta S+\gamma )^{-2}S_x]_x+\alpha (\beta S+\gamma )^{-2}S_x\) occurring in two-phase flow in porous media. Soc. Ind. Appl. Math. J. Appl. Math. 42, 318–332 (1982)

    Article  Google Scholar 

  16. Fokas, A.S., Rogers, C., Schief, W.K.: Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl. Math. Lett. 18, 321–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Freeman, N.C., Satsuma, J.: Exact solutions describing interaction of pulses with compact support in a nonlinear diffusive system. Phys. Lett. A 138, 110–112 (1989)

    Article  MathSciNet  Google Scholar 

  18. Primicerio, M.: Stefan like problems with space-dependent latent heat. Meccanica 5, 187–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rogers, C., Stallybrass, M.P., Clements, D.L.: On two-phase filtration under gravity and with boundary infiltration: application of a Bäcklund transformation. J. Nonlinear Anal. Theory Methods Appl. 7, 785–799 (1983)

    Article  MATH  Google Scholar 

  20. Rubinstein, L.I.: The Stefan Problem, American mathematical society translations, vol. 27. American Mathematical Society, Providence (1971)

    Google Scholar 

  21. Rogers, C.: Application of a reciprocal transformation to a two-phase Stefan problem. J. Phys. A: Math. Gen. 18, L105–L109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rogers, C., Ruggeri, T.: A reciprocal Bäcklund transformation: application to a nonlinear hyperbolic model in heat conduction. Lett. Il Nuova-Cimento 44, 289–296 (1985)

    Article  Google Scholar 

  23. Rogers, C.: On a class of moving boundary problems in nonlinear heat conduction: application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)

    Article  MATH  Google Scholar 

  24. Rogers, C., Broadbridge, P.: On a nonlinear moving boundary problem with heterogeneity: application of a Bäcklund transformation. Zeit. ang. Math. Phys. 39, 122–128 (1988)

    Article  MATH  Google Scholar 

  25. Rogers, C., Guo, B.Y.: A note on the onset of melting in a class of simple metals. Condition on the applied boundary flux. Acta Math. Sci. 8, 425–430 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rogers, C., Broadbridge, P.: On sedimentation in a bounded column. Int. J. Nonlinear Mech. 27, 661–667 (1992)

    Article  Google Scholar 

  27. Rogers, C.: On a class of reciprocal Stefan moving boundary problems. Zeit. Ang. Math. Phys. 66, 2069–2079 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rogers, C.: Moving boundary problems for the Harry Dym equation and its reciprocal associates. Zeit. ang. Math. Phys. 66, 3205–3220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rogers, C.: On a class of moving boundary problems for the potential mkdV equation: conjugation of Bäcklund and reciprocal transformations. Spec Issue Waves Stab. Ricerche di Matematica 65, 563–577 (2016)

    Article  MATH  Google Scholar 

  30. Rogers, C.: Moving boundary problems for an extended Dym equation. Reciprocal connect. Meccanica 52, 3531–3540 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rogers, C.: On Stefan-type moving boundary problems with heterogeneity: canonical reduction via conjugation of reciprocal transformations. Acta Mech. 230, 839–850 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rogers, C.: Moving boundary problems for heterogeous media Integrability via conjugation of reciprocal and integral transformations. J Nonlinear Math. Phys. 26, 313–325 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schief W.K., Rogers C.: Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. Roy. Soc. London A 455, 3163–3188 (1999)

  34. Salva, N.N., Tarzia, D.A.: Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions. J. Math. Anal. Appl. 379, 240–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schneidman, V.A.: Interplay of latent heat and time-dependent nucleation effects following pulsed-laser melting of a thin silicon film. J. Appl. Phys. 80, 803–811 (1996)

    Article  Google Scholar 

  36. Tarzia, D.A.: A bibliography on moving-free boundary wave problems for the heat diffusion equation. The Stefan and related Problem, MAT-Serie A 2, 1–297 (2000)

    Article  Google Scholar 

  37. Tarzia D.A.: Explicit and approximated solutions for heat and mass transfer problems with a moving interface. Chapter 20, in Advanced Topics in Mass Transfer, M. El-Amin (Ed.), InTech Open Access Publisher, Rijeka, pp 439-484 (2011)

  38. Voller, V.R., Swenson, J.B., Paola, C.: An analytical solution for a Stefan problem with variable latent heat. Int. J. Heat Mass Trans. 47, 5387–5390 (2004)

    Article  MATH  Google Scholar 

  39. Zhou, Y., Bu, W., Lu, M.: One-dimensional consolidation with a threshold gradient: a Stefan problem with rate-dependent latent heat. Int. J. Numer. Anal. Methods Geomech. 37, 2825–2832 (2013)

    Article  Google Scholar 

  40. Zhou, Y., Wang, Y.J., Bu, W.K.: Exact solution for a Stefan problem with latent heat a power function of position. Int. J. Heat Mass Trans. 9, 451–454 (2014)

    Article  Google Scholar 

  41. Zhou, Y., Xia, L.J.: Exact solution for Stefan problem with general power-type latent heat using Kummer function. Int. J. Heat Mass Trans. 84, 114–118 (2015)

    Article  Google Scholar 

Download references

Funding

Partial financial support was received from European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 823731 CONMECH and the Project 80020210100002“Soluciones exactas en problemas de frontera libre”from Austral University, Rosario, Argentina and CONICET.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by C.Rogers and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adriana C. Briozzo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briozzo, A.C., Rogers, C. & Tarzia, D.A. A class of moving boundary problems with a source term: application of a reciprocal transformation. Acta Mech 234, 1889–1900 (2023). https://doi.org/10.1007/s00707-023-03477-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03477-7

Navigation