Skip to main content
Log in

Numerical algorithm for quaternion integration based on three independent parameters with no need for re-normalization

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The relative attitude change determined from the beginning of each time step to its end defines a relative quaternion. This relative attitude is characterized by only three independent quaterion parameters, with a closed form expression for a fourth dependent parameter as a function of the independent parameters. This procedure ensures that each estimate of attitude is automatically based on a unit quaternion without the need for re-normalization. An example of a complicated three-dimensional motion is used to show that there is no loss in accuracy relative to standard unit and non-unit formulations. Also, an example of Euler integration is used to demonstrate distortion of the rotation matrix due to re-normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andrle, M.S., Crassidis, J.L.: Geometric integration of quaternions. J. Guid. Control. Dyn. 36, 1762–1767 (2013). https://doi.org/10.2514/1.58558

    Article  Google Scholar 

  2. Arribas, M., Elipe, A., Palacios, M.: Quaternions and the rotation of a rigid body. Celest. Mech. Dyn. Astron. 96, 239–251 (2006). https://doi.org/10.1007/s10569-006-9037-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Corbett, J.P., Wright, F.B.: Stabilization of Computer Circuits, WADC TR 57-425, E. Hochfeld, editor, Wright Patterson AFB (1957)

  4. Crassidis, J.L., Markley, F.L., Cheng, Y.: Survey of nonlinear attitude estimation methods. J. Guid. Control. Dyn. 30, 12–28 (2007). https://doi.org/10.2514/1.22452

    Article  Google Scholar 

  5. Evan G, H., OÕReilly, O.M.: Perspectives on Euler angle singularities. Gimbal lock, and the orthogonality of applied forces and applied moments,. Multibody Syst. Dyn. 44, 31–56 (2018). https://doi.org/10.1007/s11044-018-9620-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, R.: Minimal parameter solution of the quaternion differential equation. Int. Conf. Space Inf. Technol. 5985, 598544 (2006). https://doi.org/10.1117/12.658258

    Article  Google Scholar 

  7. Maple version 2021.2, Maplesoft, Waterloo Maple Inc. (2021)

  8. MATLAB R2016b, Simulink, Aerospace blockset, coordinate systems, equations of motion, 6DOF (quaternion) (2016)

  9. Mitchell, E.E.L., Rogers, A.E.: Quaternion parameters in the simulation of a spinning rigid body. Simulation 4, 390–396 (1965). https://doi.org/10.1177/003754976500400610

    Article  Google Scholar 

  10. Phillips, W., Hailey, C., Gebert, G.: A review of attitude kinematics for aircraft flight simulation. In: Proceedings: Modeling and Simulation Technologies Conference, 4302 (2000) https://doi.org/10.2514/6.2000-4302

  11. Phillips, W.F., Hailey, C.E., Gebert, G.A.: Review of attitude representations used for aircraft kinematics. J. Aircr. 38, 718–737 (2001). https://doi.org/10.2514/2.2824

    Article  Google Scholar 

  12. Phillips, W., Hailey, C., Gebert, G.: The effects of orthogonality error in aircraft flight simulation. In: 39th Aerospace Sciences Meeting and Exhibit, Vol. 108 (2001) https://doi.org/10.2514/6.2001-108

  13. Plaksiy, Y., Breslavsky, D., Homozkova, I., Naumenko, K.: Closed-form quaternion representations for rigid body rotation: application to error assessment in orientation algorithms of strapdown inertial navigation systems. Contin. Mech. Thermodyn. 33, 1141–1160 (2021). https://doi.org/10.1007/s00161-020-00963-4

    Article  MathSciNet  Google Scholar 

  14. Robinson, A.C.: On the use of quaternions in the simulation of rigid body motion. In: Proceedings of Simulation Council Conference, Washington, DC, pp. 1–18 (1958)

  15. Robinson, A.C.: On the Use of Quaternions in the Simulation of Rigid Body Motion, WADC TR 58-17, Wright Patterson AFB (1958)

  16. Rucker, C.: Integrating rotations using nonunit quaternions. IEEE Roboti. Autom. Lett. 3, 2979–2986 (2018). https://doi.org/10.1109/LRA.2018.2849557

    Article  Google Scholar 

  17. Seelen, L.J.H., Padding, J.T., Kuipers, J.A.M.: Improved quaternion-based integration scheme for rigid body motion. Acta Mech. 227, 3381–3389 (2016). https://doi.org/10.1007/s00707-016-1670-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Senan, N.A.F., OÕReilly, O.M.: On the use of quaternions and Euler-Rodrigues symmetric parameters with moments and moment potentials. Int. J. Eng. Sci. 47, 595–609 (2009). https://doi.org/10.1016/j.ijengsci.2008.12.008

  19. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41, 439–517 (1993)

    MathSciNet  Google Scholar 

  20. Stevens, B., Lewis, F.: Aircraft Control and Simulation. Wiley, New York (2003)

    Google Scholar 

  21. Stevens, B.L., Lewis, F.L., Johnson, E.N.: Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. Wiley, New York (2016)

    Google Scholar 

  22. Sveier, A., Sjøberg, A.M., Egeland, O.: Applied Runge–Kutta–Munthe–Kaas Integration for the Quaternion Kinematics. J. Guid. Control. Dyn. 42, 2747–2754 (2019). https://doi.org/10.2514/1.G004578

    Article  Google Scholar 

  23. Titterton, D., Weston, J.L., Weston, J.: Strapdown inertial navigation technology. IET 17 (2004)

  24. Vathsal, S.: Optimal control of quaternion propagation errors in spacecraft navigation. J. Guid. Control. Dyn. 9, 382–384 (1986). https://doi.org/10.2514/3.20120

    Article  Google Scholar 

  25. Zhao, F., Van Wachem, B.G.M.: A novel Quaternion integration approach for describing the behaviour of non-spherical particles. Acta Mech. 224, 3091–3109 (2013). https://doi.org/10.1007/s00707-013-0914-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Zipfel, P.H.: Modeling and simulation of aerospace vehicle dynamics. AIAA (2000)

Download references

Acknowledgements

No funding was obtained for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rubin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, M.B., Weiss, H. Numerical algorithm for quaternion integration based on three independent parameters with no need for re-normalization. Acta Mech 234, 2009–2020 (2023). https://doi.org/10.1007/s00707-023-03473-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03473-x

Navigation