Skip to main content
Log in

Mixed-mode I/II criterion based on combining Hill failure analysis and reinforcement isotropic solid model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Several failure criteria for fibrous and non-fibrous anisotropic materials were proposed after considering numerous implementations in various industries. Failure theories are classified as including or excluding distinct failure modes, and the majority of them do not account for intrinsic properties and loading mode mixites. In this context, theories include the gradual micromechanical transition from anisotropic to isotropic media embedding reinforcement, referred to as the “reinforcement isotropic solid model.” In other words, the reinforcement isotropic solid model ensures the independence of the fiber effects by modeling fibers as a proportion of the isotropic matrix's active stress. The Hill criterion, in conjunction with the reinforcement isotropic solid model, is employed to propose a new fracture criterion for mixed-mode I/II loading, referred to here as “Extended HILL.” Additionally, experimental results have been established to validate the failure criteria based on reinforcement in the isotropic solid mode. This criterion produces good agreement between the fracture limit curves and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(C_{ij}\) :

Compliance matrix

\(E_{ij}\) :

Elastic modulus

\(G_{ij}\) :

Shear modulus

\(K_{{\text{I}}} ,\,K_{{{\text{II}}}}\) :

Mode I and II stress intensity factor

\(K_{{{\text{I}}C}} ,K_{{{\text{II}}C}}\) :

Mode I and II fracture toughness

\(n_{1} ,\,n_{2} ,\,n_{6}\) :

Effect coefficients

\(S_{ij} (i,j = 1,..,6)\) :

Compliance matrix

\(S\) :

Shear strength

T, R, L :

Tangential, radial and longitudinal orthotropy axis in of wood

\(X_{T} ,\,X_{C}\) :

Longitudinal failure stress strength

\(Y_{T} ,\,Y_{C}\) :

Transverse failure stress strength

\(\alpha\) :

Fiber direction

\(\varepsilon_{x} ,\varepsilon_{y} ,\gamma_{xy}\) :

Strain function

\(\theta\) :

Crack direction

\(\mu\) :

Roots of the characteristic equation

\(\nu_{ij}\) :

Poisson's ratio

\(\sigma_{ij}\) :

Crack-tip stress field

\(\phi ,\,\psi\) :

Airy stress function

ASER:

Augmented strain energy release rate

EHILL:

Extended Hill

EMTS:

Extended maximum tangential stress

FLC:

Fracture limited curve

FPZ:

Fracture process zone

RIS:

Reinforcement isotropic solid

LEFM:

Linear elastic fracture mechanics

SED:

Strain energy density

SER:

Strain energy release rate

MTS:

Maximum tangential stress

MPS:

Maximum principal stress

References

  1. Razavi, S.M.J., Berto, F.: A new fixture for fracture tests under mixed mode I/II/III loading. Fatigue Fract. Eng. Mater. Struct. 42, 1874–1888 (2019)

    Google Scholar 

  2. Aliha, M.R.M., Berto, F., Mousavi, A., Razavi, S.M.J.: On the applicability of ASED criterion for predicting mixed mode I + II fracture toughness results of a rock material. Theor. Appl. Fract. Mech. 92, 198–204 (2017)

    Google Scholar 

  3. Fakoor, M., Rafiee, R.: Transition angle, a novel concept for predicting the failure mode in orthotropic materials. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 227, 2157–2164 (2012)

    Google Scholar 

  4. Griffith, A.A., Taylor, G.I.V.I.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 221, 163–198 (1921)

    MATH  Google Scholar 

  5. Daneshjoo, Z., Shokrieh, M.M., Fakoor, M.: A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects. Theor. Appl. Fract. Mech. 94, 46–56 (2018)

    Google Scholar 

  6. Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–525 (1963)

    Google Scholar 

  7. Hussain, M., Pu, S., Underwood, J.: Strain energy release rate for a crack under combined mode I and mode II. In: Fracture analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II: ASTM International (1974)

  8. Sih, G.C.: Strain-energy-density factor applied to mixed mode crack problems. Int. J. Fract. 10, 305–321 (1974)

    Google Scholar 

  9. Carloni, C., Nobile, L.: Maximum circumferential stress criterion applied to orthotropic materials. Fatigue Fract. Eng. Mater. Struct. 28, 825–833 (2005)

    Google Scholar 

  10. Fakoor, M.: Augmented Strain Energy Release Rate (ASER): a novel approach for investigation of mixed-mode I/II fracture of composite materials. Eng. Fract. Mech. 179, 177–189 (2017)

    Google Scholar 

  11. Fakoor, M., Khansari, N.M.: Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Eng. Fract. Mech. 153, 407–420 (2016)

    Google Scholar 

  12. Fakoor, M., Khansari, N.M.: General mixed mode I/II failure criterion for composite materials based on matrix fracture properties. Theor. Appl. Fract. Mech. 96, 428–442 (2018)

    Google Scholar 

  13. Jernkvist, L.O.: Fracture of wood under mixed mode loading: I. Derivation of fracture criteria. Eng. Fract. Mech. 68, 549–563 (2001)

    Google Scholar 

  14. Romanowicz, M., Seweryn, A.: Verification of a non-local stress criterion for mixed mode fracture in wood. Eng. Fract. Mech. 75, 3141–3160 (2008)

    Google Scholar 

  15. Wang, J., Ren, L., Xie, L.Z., Xie, H.P., Ai, T.: Maximum mean principal stress criterion for three-dimensional brittle fracture. Int. J. Solids Struct. 102–103, 142–154 (2016)

    Google Scholar 

  16. Daneshjoo, Z., Amaral, L., Alderliesten, R.C., Shokrieh, M.M., Fakoor, M.: Development of a physics-based theory for mixed mode I/II delamination onset in orthotropic laminates. Theor. Appl. Fract. Mech. 103, 102303 (2019)

    Google Scholar 

  17. Campagnolo, A., Meneghetti, G., Berto, F.: Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I + II) crack tip fields including the T-stress contribution. Fatigue Fract. Eng. Mater. Struct. 39, 982–998 (2016)

    Google Scholar 

  18. Fakoor, M., Shahsavar, S.: The effect of T-stress on mixed mode I/II fracture of composite materials: Reinforcement isotropic solid model in combination with maximum shear stress theory. Int. J. Solids Struct. 229, 111145 (2021)

    Google Scholar 

  19. Smith, D.J., Ayatollahi, M.R., Pavier, M.J.: The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract. Eng. Mater. Struct. 24, 137–150 (2001)

    Google Scholar 

  20. Manafi Farid, H., Fakoor, M.: Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects. Theor. Appl. Fract. Mech. 99, 147–160 (2019)

    Google Scholar 

  21. Buczek, M.B., Herakovich, C.T.: A normal stress criterion for crack extension direction in orthotropic composite materials. J. Compos. Mater. 19, 544–553 (1985)

    Google Scholar 

  22. Saouma, V.E., Ayari, M.L., Leavell, D.A.: Mixed mode crack propagation in homogeneous anisotropic solids. Eng. Fract. Mech. 27, 171–184 (1987)

    Google Scholar 

  23. Beuth, J.L., Herakovich, C.T.: Analysis of crack extension in anisotropic materials based on local normal stress. Theor. Appl. Fract. Mech. 11, 27–46 (1989)

    Google Scholar 

  24. Chamis, C.C.: Failure criteria for filamentary composites. In: Yurenka, S. (ed.) Composite Materials: Testing and Design, pp. 336–351. ASTM International, West Conshohocken (1969)

    Google Scholar 

  25. Fischer, L.: Optimization of orthotropic laminates. J. Eng. Ind. 89, 399 (1967)

    Google Scholar 

  26. Marin, J.: Theories of strength for combined stresses and nonisotropic materials. J. Aeronaut. Sci. 24, 265–258 (1957)

    MATH  Google Scholar 

  27. Hoffman, O.: The brittle strength of orthotropic materials. J. Compos. Mater. 1, 200–206 (1967)

    Google Scholar 

  28. Rowlands, R.E., Gunderson, D.E., Suhling, J.C., Johnson, M.W.: Biaxial strength of paperboard predicted by hill-type theories. J. Strain Anal. Eng. Des. 20, 121–127 (1985)

    Google Scholar 

  29. Echaabi, J., Trochu, F., Gauvin, R.: Review of failure criteria of fibrous composite materials. Polym. Compos. 17, 786–98 (1996)

    Google Scholar 

  30. Wu, E.M.: Optimal experimental measurements of anisotropic failure tensors. J. Compos. Mater. 6, 472–489 (1972)

    Google Scholar 

  31. Wu, R.-Y., Stachurski, Z.: Evaluation of the normal stress interaction parameter in the tensor polynomial strength theory for anisotropic materials. J. Compos. Mater. 18, 456–463 (1984)

    Google Scholar 

  32. Suhling, J., Rowlands, R., Johnson, M., Gunderson, D.E.: Tensorial strength analysis of paperboard. Exp. Mech. 25, 75–84 (1985)

    Google Scholar 

  33. Pang, S.-S., Pandian, A., Bradshaw, R.D.: Modified Tsai–Wu failure criterion for fiber-reinforced composite laminates. Polym. Compos. 13, 273–277 (1992)

    Google Scholar 

  34. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Google Scholar 

  35. Chamis, C.: Failure criteria for filamentary composites. In: STP 460, Composite Materials: Testing and Design. American Society for Testing and Materials, pp. 336–351 (1972)

  36. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 193, 281–297 (1948)

    MathSciNet  MATH  Google Scholar 

  37. Soni, S.R.: A comparative study of failure envelopes in composite laminates. J. Reinf. Plast. Compos. 2, 34–42 (1983)

    Google Scholar 

  38. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Google Scholar 

  39. Puck, A.: Calculating the strength of glass fibre/plastic laminates under combined load. Kunstst. Ger. Plast. 55, 780–787 (1969)

    Google Scholar 

  40. Christensen, R.M.: A critical evaluation for a class of micro-mechanics models. J. Mech. Phys. Solids 38, 379–404 (1990)

    Google Scholar 

  41. Christensen, R.M.: Stress based yield/failure criteria for fiber composites. Int. J. Solids Struct. 34, 529–543 (1997)

    MATH  Google Scholar 

  42. Feng, W.W.: A failure criterion for composite materials. J. Compos. Mater. 25, 88–100 (1991)

    Google Scholar 

  43. Azzi, V., Tsai, S.W.: Anisotropic strength of composites. Exp. Mech. 5, 283–288 (1965)

    Google Scholar 

  44. Merzoug, M., Boulenouar, A., Benguediab, M.: Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch. Steel Compos. Struct. 25, 209–216 (2017)

    Google Scholar 

  45. Cetisli, F., Kaman, M.O.: Numerical analysis of interface crack problem in composite plates jointed with composite patch. Steel Compos. Struct. 16, 203–220 (2014)

    Google Scholar 

  46. Golewski, G.L.: Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture. J. Civ. Eng. Manag. 23, 613–620 (2017)

    Google Scholar 

  47. Sadowski, T., Golewski, G.L.: A failure analysis of concrete composites incorporating fly ash during torsional loading. Compos. Struct. 183, 527–535 (2018)

    Google Scholar 

  48. Faal, R.T., Aghsam, A., Milani, A.S.: Stress intensity factors for cracks in functionally graded annular planes under anti-plane loading. Int. J. Mech. Sci. 93, 73–81 (2015)

    Google Scholar 

  49. Lazzarin, P., Campagnolo, A., Berto, F.: A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading. Theor. Appl. Fract. Mech. 71, 21–30 (2014)

    Google Scholar 

  50. Wu, E.M.: Application of fracture mechanics to anisotropic plates. J. Appl. Mech. 34, 967–974 (1967)

    Google Scholar 

  51. Hunt, D.G., Croager, W.P.: Mode II fracture toughness of wood measured by a mixed-mode test method. J. Mater. Sci. Lett. 1, 77–79 (1982)

    Google Scholar 

  52. Mall, S., Murphy Joseph, F., Shottafer, J.E.: Criterion for mixed mode fracture in wood. J. Eng. Mech. 109, 680–690 (1983)

    Google Scholar 

  53. Jernkvist, L.O.: Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies. Eng. Fract. Mech. 68, 565–576 (2001)

    Google Scholar 

  54. Suo, Z., Bao, G., Fan, B., Wang, T.C.: Orthotropy rescaling and implications for fracture in composites. Int. J. Solids Struct. 28, 235–248 (1991)

    Google Scholar 

  55. Tzu-Chiang, W., Shih, C.F., Zhigang, S.: Crack extension and kinking in laminates and bicrystals. Int. J. Solids Struct. 29, 327–344 (1992)

    MATH  Google Scholar 

  56. van der Put, T.A.C.M.: A new fracture mechanics theory for orthotropic materials like wood. Eng. Fract. Mech. 74, 771–781 (2007)

    Google Scholar 

  57. Li, J., Meng, S., Tian, X., Song, F., Jiang, C.: A non-local fracture model for composite laminates and numerical simulations by using the FFT method. Compos. B Eng. 43, 961–971 (2012)

    Google Scholar 

  58. Anaraki, A.R.G., Fakoor, M.: General mixed mode I/II fracture criterion for wood considering T-stress effects. Mater. Des. 31, 4461–4469 (2010)

    Google Scholar 

  59. Gowhari Anaraki, A.R., Fakoor, M.: Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model. Mater. Sci. Eng. A 527, 7184–7191 (2010)

    Google Scholar 

  60. Fakoor, M., Khezri, M.S.: A micromechanical approach for mixed mode I/II failure assessment of cracked highly orthotropic materials such as wood. Theor. Appl. Fract. Mech. 109, 102740 (2020)

    Google Scholar 

  61. Anaraki, A.R.G., Fakoor, M.: A new mixed-mode fracture criterion for orthotropic materials, based on strength properties. J. Strain Anal. Eng. Des. 46, 33–44 (2010)

    Google Scholar 

  62. Fakoor, M., Shahsavar, S.: Fracture assessment of cracked composite materials: progress in models and criteria. Theor. Appl. Fract. Mech. 105, 102430 (2020)

    Google Scholar 

  63. Li, J., Fu, Z., Gu, Y., Qin, Q.-H.: Recent advances and emerging applications of the singular boundary method for large-scale and high-frequency computational acoustics. Adv. Appl. Math. Mech. 14, 315–343 (2021)

    MathSciNet  MATH  Google Scholar 

  64. Li, J., Gu, Y., Qin, Q.-H., Zhang, L.: The rapid assessment for three-dimensional potential model of large-scale particle system by a modified multilevel fast multipole algorithm. Comput. Math. Appl. 89, 127–138 (2021)

    MathSciNet  MATH  Google Scholar 

  65. Li, J., Zhang, L.: High-precision calculation of electromagnetic scattering by the Burton–Miller type regularized method of moments. Eng. Anal. Bound. Elem. 133, 177–184 (2021)

    MathSciNet  MATH  Google Scholar 

  66. Li, J., Chen, W.: A modified singular boundary method for three-dimensional high frequency acoustic wave problems. Appl. Math. Model. 54, 189–201 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Li, J., Fu, Z., Chen, W.: Numerical investigation on the obliquely incident water wave passing through the submerged breakwater by singular boundary method. Comput. Math. Appl. 71, 381–390 (2016)

    MathSciNet  MATH  Google Scholar 

  68. ASTM, I.: Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. ASTM D5045-99 (2007)

  69. Laboratory, F.P.: Wood Handbook: Wood as an Engineering Material: The Laboratory (1987)

  70. Fakoor, M., Rafiee, R., Sheikhansari, M.: The influence of fiber-crack angle on the crack tip parameters in orthotropic materials. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231, 418–431 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SZH contributed to software, validation, formal analysis, data curation, and writing original draft. MHS contributed to investigation, supervision, and writing review and editing. MF contributed to conceptualization, methodology, supervision, and writing review and editing.

Corresponding author

Correspondence to Mahdi Fakoor.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare Hosseinabadi, S., Sabour, M.H. & Fakoor, M. Mixed-mode I/II criterion based on combining Hill failure analysis and reinforcement isotropic solid model. Acta Mech 234, 1437–1450 (2023). https://doi.org/10.1007/s00707-022-03456-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03456-4

Navigation