Skip to main content
Log in

A Cluster and Search Stacking Algorithm (CSSA) for predicting the ultimate bearing capacity of an HSS column

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

High-strength steel (HSS) columns are widely used in industry and construction because of their outstanding properties. Predicting the ultimate bearing capacity of HSS columns is not an easy task due to many nonlinear factors such as geometry and material properties. In this paper, a Cluster and Search Stacking Algorithm (CSSA) model based on the cluster algorithm, search algorithm, and Stacking algorithm is proposed to predict the ultimate bearing capacity of HSS columns. Specifically, the clustering algorithm is used to cluster the base models, and the search algorithm is implemented to find the best combination of base models in the Stacking algorithm. Results show that the proposed CSSA model is more effective than base models optimized by the Bayesian Optimization algorithm. Furthermore, the Bland–Altman approach is utilized to examine the consistency of the CSSA model to validate its reliability. Finally, the Shapley additive explanation (SHAP) method is introduced to analyze and explain the ultimate bearing capacity predicted by the CSSA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kuziak, R., Kawalla, R., Waengler, S.: Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 8(2), 103–117 (2008). https://doi.org/10.1016/S1644-9665(12)60197-6

    Article  Google Scholar 

  2. Marino, E.M., Nakashima, M., Mosalam, K.M.: Comparison of European and Japanese seismic design of steel building structures. Eng. Struct. 27(6), 827–840 (2005). https://doi.org/10.1016/j.engstruct.2005.01.004

    Article  Google Scholar 

  3. Miki, C., Homma, K., Tominaga, T.: High strength and high performance steels and their use in bridge structures. J. Constr. Steel. Res. 58(1), 3–20 (2002). https://doi.org/10.1016/S0143-974X(01)00028-1

    Article  Google Scholar 

  4. Ministry Of, H., Urban-Rural Development of the People’s Republic Of, C.: Standard for Design of Steel structures (GB 50017-2017). China Architecture and Building Press Beijing, China (2017)

  5. Standard, B.: Eurocode 3—Design of steel structures—. BS EN 1(2005), 1993–2001 (2006)

    Google Scholar 

  6. Aisc: ANSI/AISC 360‐16: specification for structural steel buildings. (2016)

  7. Phillips, A., Liu, C.S., Justusson, J.W.: An experimental investigation of yield surfaces at elevated temperatures. Acta Mech. 14(2), 119–146 (1972). https://doi.org/10.1007/BF01184853

    Article  Google Scholar 

  8. Shi, G., Xu, K., Ban, H., Lin, C.: Local buckling behavior of welded stub columns with normal and high strength steels. J. Constr. Steel. Res. 119, 144–153 (2016). https://doi.org/10.1016/j.jcsr.2015.12.020

    Article  Google Scholar 

  9. Shi, G., Zhou, W., Lin, C.: Experimental investigation on the local buckling behavior of 960 MPa high strength steel welded section stub columns. Adv. Struct. Eng. 18(3), 423–437 (2015). https://doi.org/10.1260/1369-4332.18.3.423

    Article  Google Scholar 

  10. Yang, L., Shi, G., Zhao, M., Zhou, W.: Research on interactive buckling behavior of welded steel box-section columns. Thin-Walled Struct. 115, 34–47 (2017). https://doi.org/10.1016/j.tws.2017.01.030

    Article  Google Scholar 

  11. Beg, D., Hladnik, L.: Slenderness limit of Class 3 I cross-sections made of high strength steel. J. Constr. Steel. Res. 38(3), 201–217 (1996). https://doi.org/10.1016/0143-974X(96)00025-9

    Article  Google Scholar 

  12. Wang, Y.-B., Li, G.-Q., Chen, S.-W., Sun, F.-F.: Experimental and numerical study on the behavior of axially compressed high strength steel box-columns. Eng. Struct. 58, 79–91 (2014). https://doi.org/10.1016/j.engstruct.2013.10.013

    Article  Google Scholar 

  13. Cao, X., Zhao, G., Kong, Z., Shen, H., Cheng, C., Chen, Z., Kim, S.-E.: Experimental study on local buckling of 800 MPa HSS welded I-section columns under axial compression. Thin-Walled Struct. 155, 106878 (2020). https://doi.org/10.1016/j.tws.2020.106878

    Article  Google Scholar 

  14. Kaveh, A., Dadras Eslamlou, A., Javadi, S.M., Geran Malek, N.: Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mech. 232(3), 921–931 (2021). https://doi.org/10.1007/s00707-020-02878-2

    Article  MATH  Google Scholar 

  15. Abueidda, D.W., Koric, S., Sobh, N.A.: Topology optimization of 2D structures with nonlinearities using deep learning. Comput. Struct. 237, 106283 (2020). https://doi.org/10.1016/j.compstruc.2020.106283

    Article  Google Scholar 

  16. Koeppe, A., Bamer, F., Markert, B.: An efficient Monte Carlo strategy for elasto-plastic structures based on recurrent neural networks. Acta Mech. 230(9), 3279–3293 (2019). https://doi.org/10.1007/s00707-019-02436-5

    Article  MathSciNet  Google Scholar 

  17. Sudarsana Rao, H., Ghorpade, V.G., Mukherjee, A.: A genetic algorithm based back propagation network for simulation of stress–strain response of ceramic-matrix-composites. Comput. Struct. 84(5), 330–339 (2006). https://doi.org/10.1016/j.compstruc.2005.09.022

    Article  Google Scholar 

  18. Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G.M., Lim, J.B.P.: A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes. J. Build. Eng. 53, 104592 (2022). https://doi.org/10.1016/j.jobe.2022.104592

  19. Li, X.-Q., Song, L.-K., Bai, G.-C.: Recent advances in reliability analysis of aeroengine rotor system: a review. Int. J. Struct. Integrity 13(1), 1–29 (2022). https://doi.org/10.1108/IJSI-10-2021-0111

    Article  Google Scholar 

  20. Fang, Z., Roy, K., Mares, J., Sham, C.-W., Chen, B., Lim, J.B.P.: Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network. Structures 33, 2792–2802 (2021). https://doi.org/10.1016/j.istruc.2021.05.096

  21. Degtyarev, V.V., Tsavdaridis, K.D.: Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms. J. Build. Eng. 51, 104316 (2022). https://doi.org/10.1016/j.jobe.2022.104316

    Article  Google Scholar 

  22. Seung-Eock, K., Quang-Viet, V., George, P., Zhengyi, K., Viet-Hung, T.: Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames. Steel Compos. Struct. 37, 193–209 (2020). https://doi.org/10.12989/scs.2020.37.2.193

  23. Dissanayake, M., Nguyen, H., Poologanathan, K., Perampalam, G., Upasiri, I., Rajanayagam, H., Suntharalingam, T.: Prediction of shear capacity of steel channel sections using machine learning algorithms. Thin-Walled Struct. 175, 109152 (2022). https://doi.org/10.1016/j.tws.2022.109152

    Article  Google Scholar 

  24. Xiong, J., Zhang, T., Shi, S.: Machine learning of mechanical properties of steels. Sci. China Technol. Sci. 63(7), 1247–1255 (2020). https://doi.org/10.1007/s11431-020-1599-5

    Article  Google Scholar 

  25. Cindy, N.N.K., Pang-Jo, C., Kazuaki, O.: Tensile strength prediction of corroded steel plates by using machine learning approach. Steel Compos. Struct. 24, 635–641 (2017). https://doi.org/10.12989/scs.2017.24.5.635

  26. Gao, J., Wang, C., Xu, Z., Wang, J., Yan, S., Wang, Z.: Gaussian process regression based remaining fatigue life prediction for metallic materials under two-step loading. Int. J. Fatigue 158, 106730 (2022). https://doi.org/10.1016/j.ijfatigue.2022.106730

    Article  Google Scholar 

  27. He, L., Wang, Z., Akebono, H., Sugeta, A.: Machine learning-based predictions of fatigue life and fatigue limit for steels. J. Mater. Sci. Technol. 90, 9–19 (2021). https://doi.org/10.1016/j.jmst.2021.02.021

    Article  Google Scholar 

  28. Pala, M., Caglar, N.: A parametric study for distortional buckling stress on cold-formed steel using a neural network. J. Constr. Steel. Res. 63(5), 686–691 (2007). https://doi.org/10.1016/j.jcsr.2006.07.005

    Article  Google Scholar 

  29. Cao, X., Liu, S., Cheng, C., Zhong, R., Tao, Z., Zhou, X., Kong, Z.: Numerical simulation for local buckling behaviour of HSS welded I-section columns under axial compression. Thin-Walled Struct. 174, 109060 (2022). https://doi.org/10.1016/j.tws.2022.109060

    Article  Google Scholar 

  30. Dai, H., Macbeth, C.: Effects of Learning Parameters on Learning Procedure and Performance of a BPNN. Neural Netw. 10(8), 1505–1521 (1997). https://doi.org/10.1016/S0893-6080(97)00014-2

    Article  Google Scholar 

  31. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. (2001). https://doi.org/10.1214/aos/1013203451

  32. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the Bayesian optimization algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation—Volume 1, pp. 525–532. Morgan Kaufmann Publishers Inc., Orlando (1999)

  33. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems 25 (2012). arXiv:1206.2944

  34. Victoria, A.H., Maragatham, G.: Automatic tuning of hyperparameters using Bayesian optimization. Evol. Syst. 12(1), 217–223 (2021). https://doi.org/10.1007/s12530-020-09345-2

    Article  Google Scholar 

  35. Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., Deng, S.-H.: Hyperparameter optimization for machine learning models based on Bayesian optimization b. J. Electron. Sci. Technol. 17(1), 26–40 (2019). https://doi.org/10.11989/JEST.1674-862X.80904120

  36. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992). https://doi.org/10.1016/S0893-6080(05)80023-1

    Article  Google Scholar 

  37. Wang, M., Wang, H., Wang, J., Liu, H., Lu, R., Duan, T., Gong, X., Feng, S., Liu, Y., Cui, Z., Li, C., Ma, J.: A novel model for malaria prediction based on ensemble algorithms. PLoS ONE (2019). https://doi.org/10.1371/journal.pone.0226910

  38. Cui, S., Yin, Y., Wang, D., Li, Z., Wang, Y.: A stacking-based ensemble learning method for earthquake casualty prediction. Appl. Soft. Comput 101, 107038 (2021). https://doi.org/10.1016/j.asoc.2020.107038

    Article  Google Scholar 

  39. Jiang, M., Liu, J., Zhang, L., Liu, C.: An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Physica A 541, 122272 (2020). https://doi.org/10.1016/j.physa.2019.122272

    Article  Google Scholar 

  40. Chicco, D., Warrens, M.J., Jurman, G.: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 7, e623 (2021). https://doi.org/10.7717/peerj-cs.623

    Article  Google Scholar 

  41. Singh, A., Yadav, A., Rana, A.: K-means with three different distance metrics. Int. J. Comput. Appl. (2013). https://doi.org/10.5120/11430-6785

  42. Li, W., Xing, X., Liu, F., Zhang, Y.: Application of improved grid search algorithm on SVM for classification of tumor gene. Int. J. Multimedia Ubiquit. Eng. 9(11), 181–188 (2014). https://doi.org/10.14257/ijmue.2014.9.11.18

  43. Urolagin, S., Sharma, N., Datta, T.K.: A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting. Energy 231, 120963 (2021). https://doi.org/10.1016/j.energy.2021.120963

    Article  Google Scholar 

  44. Dabiri, H., Kheyroddin, A., Faramarzi, A.: Predicting tensile strength of spliced and non-spliced steel bars using machine learning- and regression-based methods. Constr. Build. Mater. 325, 126835 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126835

    Article  Google Scholar 

  45. Azimi, H., Bonakdari, H., Ebtehaj, I., Gharabaghi, B., Khoshbin, F.: Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta Mech. 229(3), 1197–1214 (2018). https://doi.org/10.1007/s00707-017-2043-9

    Article  Google Scholar 

  46. Martin Bland, J., Altman, D.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476), 307–310 (1986). https://doi.org/10.1016/S0140-6736(86)90837-8

    Article  Google Scholar 

  47. Lipton, Z.C.: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

    Article  Google Scholar 

  48. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30 (2017). arXiv:1705.07874

  49. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014). https://doi.org/10.1007/s10115-013-0679-x

    Article  Google Scholar 

Download references

Acknowledgements

The project is supported by the National key research and development program (Grant No. 2020YFA0710904-03), National Natural Science Foundation of China (Grant No. U20A20285 and NO. 52172357), Science Foundation of Hunan Province (Grant No. 2021JJ10016) and Key Research and Development Program of Hunan Province (Grant No. 2020GK4062 and 2020GK2094). This work was also supported by Leverhulme Trust Research Fellowship and National Science and Technology Ministry, PR China (Gant No. G2022160016L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z.C., Peng, Y., Han, J. et al. A Cluster and Search Stacking Algorithm (CSSA) for predicting the ultimate bearing capacity of an HSS column. Acta Mech 234, 1627–1648 (2023). https://doi.org/10.1007/s00707-022-03446-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03446-6

Navigation