Skip to main content
Log in

Frequency shifts in a laterally finite piezoelectric resonator loaded with a viscous liquid layer of finite size

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The free shear vibration in a laterally finite piezoelectric plate loaded with a viscous liquid layer of finite size is investigated in this paper. Considering the lateral edge effect and segmented boundary condition at the solid–liquid interface, a new theoretical solution is obtained using the Fourier series, from which the resonant frequencies and mode shapes are calculated and examined. The convergence of the solution is verified, and the correctness is proved by the finite element method. The results reveal that the vibration in the central part of the sensor decays into lateral boundaries and the liquid layer when contacting with liquid, resulting in a decrease in frequency and an increase in attenuation. Moreover, the effects of liquid thickness, length, viscosity and density on resonant frequency are quantified, which are expected to provide useful data and guidelines for liquid sensor design and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thompson, M., Kipling, A.L., Duncanhewitt, W.C., Rajakovic, L.V., Cavicvlasak, B.A.: Thickness shear-mode acoustic wave sensors in the liquid phase-a review. Analyst 116, 881–889 (1991)

    Article  Google Scholar 

  2. Hossenlopp, J.M.: Applications of acoustic wave devices for sensing in liquid environments. Appl. Spectrosc. Rev. 41(2), 151–164 (2006)

    Article  Google Scholar 

  3. Rocha-Gaso, M.I., March-Iborra, C., Montoya-Baides, A., Arnau-Vives, A.: Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors (Basel) 9(7), 5740–5769 (2009)

    Article  Google Scholar 

  4. Ding, X., Li, P., Lin, S.C., Stratton, Z.S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F., Huang, T.J.: Surface acoustic wave microfluidics. Lab Chip 13(18), 3626–3649 (2013)

    Article  Google Scholar 

  5. Yang, C.H., Chimenti, D.E.: Acoustic waves in a piezoelectric plate loaded by a dielectric fluid. Appl. Phys. Lett. 63(10), 1328–1330 (1993)

    Article  Google Scholar 

  6. Mujahid, A., Afzal, A., Dickert, F.L.: An overview of high frequency acoustic sensors-QCMs, SAWs and FBARs-chemical and biochemical applications. Sensors (Basel) 19(20), 1–29 (2019)

    Article  Google Scholar 

  7. Hartz, J.S.R., Emanetoglu, N.W., Howell, C., Vetelino, J.F.: Lateral field excited quartz crystal microbalances for biosensing applications. Biointerphases 15(3), 030801 (2020)

    Article  Google Scholar 

  8. Fu, Y.Q., Pang, H.F., Torun, H., Tao, R., McHale, G., Reboud, J., Tao, K., Zhou, J., Luo, J., Gibson, D., Luo, J., Hu, P.: Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments. Lab Chip 21(2), 254–271 (2021)

    Article  Google Scholar 

  9. Arnau, A.: A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors (Basel) 8(1), 370–411 (2008)

    Article  Google Scholar 

  10. Caliendo, C., Hamidullah, M.: A theoretical study of love wave sensors based on ZnO-Glass layered structures for application to liquid environments. Biosensors (Basel) 6(4), 1–13 (2016)

    Google Scholar 

  11. Caliendo, C., Hamidullah, M.: Guided acoustic wave sensors for liquid environments. J. Phys. D Appl. Phys. 52(15), 1–28 (2019)

    Article  Google Scholar 

  12. Voglhuber-Brunnmaier, T., Jakoby, B.: Electromechanical resonators for sensing fluid density and viscosity-a review. Meas. Sci. Technol. 33(1), 1–24 (2021)

    Google Scholar 

  13. Thalhammer, R., Braun, S., Devcic-Kuhar, B., Groschl, M., Trampler, F., Benes, E., Nowotny, H., Kostal, P.: Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1331–1340 (1998)

    Article  Google Scholar 

  14. Kielczynski, P., Szalewski, M., Balcerzak, A., Rostocki, A.J., Tefelski, D.B.: Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature. Ultrasonics 51(8), 921–924 (2011)

    Article  Google Scholar 

  15. Kiełczyński, P., Ptasznik, S., Szalewski, M., Balcerzak, A., Wieja, K., Rostocki, A.J.: Application of ultrasonic methods for evaluation of high-pressure physicochemical parameters of liquids. Arch. Acoust. 44(2), 329–337 (2019)

    Google Scholar 

  16. Sun, J.B., Du, J.K., Yang, J.S., Wang, J.: Shear-horizontal waves in a rotated Y-cut quartz plate in contact with a viscous fluid. Ultrasonics 52(1), 133–137 (2012)

    Article  Google Scholar 

  17. Zagrouba, M., Bouhdima, M.S.: Investigation of SH wave propagation in piezoelectric plates. Acta Mech. 232, 3363–3379 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, J., Li, X., Zhang, W.: Thickness shear vibration of a ZnO film structure covered with magnetic fluid. J. Vibroeng. 20(2), 872–880 (2018)

    Article  Google Scholar 

  19. Kiełczyński, P., Szalewski, M., Balcerzak, A.: Effect of a viscous liquid loading on Love wave propagation. Int. J. Solids. Struct. 49(17), 2314–2319 (2012)

    Article  Google Scholar 

  20. Bonhomme, J., Oudich, M., Chavez, P.A.S., Bellaredj, M.L.F., Bryche, J.F., Beyssen, D., Charette, P.G., Sarry, F.: Numerical characterization of Love waves dispersion in viscoelastic guiding-layer under viscous fluid. J. Appl. Phys. 128(15), 154502-1–9 (2020)

    Article  Google Scholar 

  21. Billon, F., El Baroudi, A.: Mathematical modelling of Love waves propagation in viscoelastic waveguide loaded with complex fluids. Appl. Math. Model. 96, 559–569 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharma, V., Kumar, S.: Microstructural and viscous liquid loading effects on the propagation of love waves in a piezomagnetic layered structure. Mech. Adv. Mater. Struct. 28(16), 1703–1713 (2021)

    Article  Google Scholar 

  23. Zhang, C., Caron, J.J., Vetelino, J.F.: The Bleustein–Gulyaev wave for liquid sensing applications. Sens. Actuators B 7, 64–68 (2001)

    Article  Google Scholar 

  24. Guo, F.L., Sun, R.: Propagation of Bleustein–Gulyaev wave in 6mm piezoelectric materials loaded with viscous liquid. Int. J. Solids. Struct. 45(13), 3699–3710 (2008)

    Article  MATH  Google Scholar 

  25. Qian, Z.H., Jin, F., Li, P., Hirose, S.: Bleustein–Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid layer of finite thickness. Int. J. Solids. Struct. 47(25–26), 3513–3518 (2010)

    Article  MATH  Google Scholar 

  26. El Baroudi, A., Le Pommellec, J.Y.: Bleustein–Gulyaev waves in a finite piezoelectric material loaded with a viscoelastic fluid. Wave Motion 101, 1–10 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, Z.N., Qian, Z.H., Yong, Y.K.: Frequency shift prediction of a shear mode multi-layered FBAR sensor in viscous media using transfer matrix method. Appl. Math. Model. 99, 555–565 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, B., Boström, A., Niklasson, A.J.: Antiplane shear waves from a piezoelectric strip actuator: exact versus effective boundary condition solutions. Smart Mater. Struct. 13(1), 161–168 (2004)

    Article  Google Scholar 

  29. Kong, Y.P., Liu, J.X., He, H.J., Yang, J.S.: Effects of mass layer dimension on a finite quartz crystal microbalance. Acta Mech. 222(1–2), 103–113 (2011)

    Article  MATH  Google Scholar 

  30. Zhao, Z.N., Wang, B., Qian, Z.H., Kuznetsova, I., Ma, T.F., Yong, Y.K.: Design considerations for frequency shifts in a laterally finite FBAR sensor in contact with the newtonian liquid. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(11), 2402–2412 (2020)

    Article  Google Scholar 

  31. Fang, H.Y., Yang, J.S., Jiang, Q.: Rotation-perturbed surface acoustic waves propagating in piezoelectric crystals. Int. J. Solids. Struct. 37, 4933–4947 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12061131013, 11972276, 12172171 and 12211530064), the State Key Laboratory of Mechanics and Control of Mechanical Structures at NUAA (No. MCMS-I-0522G01), the Fundamental Research Funds for the Central Universities (NS2022011 and NE2020002), National Natural Science Foundation of Jiangsu Province (BK20211176), Local Science and Technology Development Fund Projects Guided by the Central Government (2021Szvup061), Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan (Shuangchuang Doctor Program, JSSCBS20210166), the Start-up Fund supported by NUAA and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Prof. Iren Kuznetsova and Dr. Smirnov thank Russian Ministry of Science and Higher Education (government task).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhu, F., Li, P. et al. Frequency shifts in a laterally finite piezoelectric resonator loaded with a viscous liquid layer of finite size. Acta Mech 234, 1421–1436 (2023). https://doi.org/10.1007/s00707-022-03440-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03440-y

Navigation