Skip to main content
Log in

A high-accuracy continuous shear stress multilayered plate model for FG-CNTRC structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Without regarding interlayer continuity of transverse shear stresses in the displacement expressions, traditional higher-order plate theories have difficulty in predicting continuous shear stress fields accurately for multilayered functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates with independent CNT distributions in each layer. In this paper, a new higher-order continuous shear stress multilayered plate model is developed for high-accuracy analysis of FG-CNTRC plates. In the theoretical formulation, higher-order interpolation functions and piecewise descriptions are adopted for transverse shear stress fields. By fulfilling the interlayer continuity of shear stresses and displacements, the displacement expressions for FG-CNTRC plates are formulated. The accuracy of the proposed model is determined by two kinds of parameters: the order of assumed transverse shear stress fields and the number of subdivisions. Compared with traditional higher-order theories, the proposed model can accurately predict continuous transverse shear stresses for FG-CNTRC plates with different CNT configurations by constitutive relations directly. Additionally, a four-node rectangular plate element associated with the proposed model is formulated. Results show that the proposed model agrees well with the exact solutions and results from ANSYS. With the same amount of calculation, the proposed higher-order model has higher accuracy than the model with more subdivisions, especially for asymmetric plates with discontinuous CNT ply angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015). https://doi.org/10.1016/j.compstruct.2014.09.041

    Article  Google Scholar 

  3. Sun, C.H., Li, F., Cheng, H.M., Lu, G.Q.: Axial Young’s modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2119409

    Article  Google Scholar 

  4. Van Do, V.N., Lee, Y.K., Lee, C.H.: Isogeometric analysis of FG-CNTRC plates in combination with hybrid type higher-order shear deformation theory. Thin-Walled Struct. 148, 106565 (2020). https://doi.org/10.1016/j.tws.2019.106565

    Article  Google Scholar 

  5. Garg, A., Belarbi, M.O., Chalak, H.D., Chakrabarti, A.: A review of the analysis of sandwich FGM structures. Compos. Struct. 258, 113427 (2021). https://doi.org/10.1016/j.compstruct.2020.113427

    Article  Google Scholar 

  6. She, G.-L.: Guided wave propagation of porous functionally graded plates: the effect of thermal loadings. J. Therm. Stress. 44, 1289–1305 (2021). https://doi.org/10.1080/01495739.2021.1974323

    Article  Google Scholar 

  7. She, G.-L., Yuan, F.-G., Ren, Y.-R.: Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments. Compos. Struct. 170, 111–121 (2017). https://doi.org/10.1016/j.compstruct.2017.03.010

    Article  Google Scholar 

  8. She, G.-L., Yuan, F.-G., Ren, Y.-R., Liu, H.-B., Xiao, W.-S.: Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Compos. Struct. 203, 614–623 (2018). https://doi.org/10.1016/j.compstruct.2018.07.063

    Article  Google Scholar 

  9. Boggarapu, V., Gujjala, R., Ojha, S., Acharya, S., Chowdary, S., Kumar Gara, D.: State of the art in functionally graded materials. Compos. Struct. 262, 113596 (2021). https://doi.org/10.1016/j.compstruct.2021.113596

    Article  Google Scholar 

  10. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M., She, G.L.: On snap-buckling of FG-CNTR curved nanobeams considering surface effects. Steel Compos. Struct. 38, 293–304 (2021). https://doi.org/10.12989/scs.2021.38.3.293

    Article  Google Scholar 

  11. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y., Luo, J.: Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments. Steel Compos. Struct. 43(6), 797–808 (2022)

    Google Scholar 

  12. Zhang, Y., Liu, W.: Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using. Acta Mech. (2022). https://doi.org/10.1007/s00707-022-03273-9

    Article  MATH  Google Scholar 

  13. Mehar, K., Panda, S.K.: Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading. Acta Mech. 231, 1105–1123 (2020). https://doi.org/10.1007/s00707-019-02579-5

    Article  MathSciNet  Google Scholar 

  14. Gia Phi, B., Van Hieu, D., Sedighi, H.M., Sofiyev, A.H.: Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments. Acta Mech. 233, 2249–2270 (2022). https://doi.org/10.1007/s00707-022-03224-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Babaei, H., Kiani, Y., Eslami, M.R.: Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: a two-step perturbation technique. Acta Mech. 232, 3897–3915 (2021). https://doi.org/10.1007/s00707-021-03027-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, Z., Zhang, Y., Yao, G.: Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells. Acta Mech. 231, 2497–2519 (2020). https://doi.org/10.1007/s00707-020-02650-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Setoodeh, A.R., Shojaee, M.: Application of TW-DQ method to nonlinear free vibration analysis of FG carbon nanotube-reinforced composite quadrilateral plates. Thin-Walled Struct. 108, 1–11 (2016). https://doi.org/10.1016/j.tws.2016.07.019

    Article  Google Scholar 

  18. Fu, Y., Zhong, J., Shao, X., Tao, C.: Analysis of nonlinear dynamic stability for carbon nanotube-reinforced composite plates resting on elastic foundations. Mech. Adv. Mater. Struct. 23, 1284–1289 (2016). https://doi.org/10.1080/15376494.2015.1068404

    Article  Google Scholar 

  19. Lei, Z.X., Zhang, L.W., Liew, K.M.: Buckling analysis of CNT reinforced functionally graded laminated composite plates. Compos. Struct. 152, 62–73 (2016). https://doi.org/10.1016/j.compstruct.2016.05.047

    Article  Google Scholar 

  20. García-Macías, E., Castro-Triguero, R., Saavedra Flores, E.I., Friswell, M.I., Gallego, R.: Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Compos. Struct. 140, 473–490 (2016). https://doi.org/10.1016/j.compstruct.2015.12.044

    Article  Google Scholar 

  21. Huang, B., Guo, Y., Wang, J., Du, J., Qian, Z., Ma, T., Yi, L.: Bending and free vibration analyses of antisymmetrically laminated carbon nanotube-reinforced functionally graded plates. J. Compos. Mater. 51, 3111–3125 (2017). https://doi.org/10.1177/0021998316685165

    Article  Google Scholar 

  22. Golmakani, M.E., Zeighami, V.: Nonlinear thermo-elastic bending of functionally graded carbon nanotube-reinforced composite plates resting on elastic foundations by dynamic relaxation method. Mech. Adv. Mater. Struct. 25, 868–880 (2018). https://doi.org/10.1080/15376494.2017.1310336

    Article  Google Scholar 

  23. Draoui, A., Zidour, M., Tounsi, A., Adim, B.: Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). J. Nano Res. 57, 117–135 (2019). https://doi.org/10.4028/www.scientific.net/jnanor.57.117

    Article  Google Scholar 

  24. Fu, T., Chen, Z., Yu, H., Wang, Z., Liu, X.: Mechanical behavior of laminated functionally graded carbon nanotube reinforced composite plates resting on elastic foundations in thermal environments. J. Compos. Mater. 53, 1159–1179 (2019). https://doi.org/10.1177/0021998318796170

    Article  Google Scholar 

  25. Fan, Y., Wang, H.: Nonlinear bending and postbuckling analysis of matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers in thermal environments. Compos. Part B Eng. 86, 1–16 (2016). https://doi.org/10.1016/j.compositesb.2015.09.048

    Article  Google Scholar 

  26. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. Trans. ASME. 51, 745–752 (1984). https://doi.org/10.1115/1.3167719

    Article  MATH  Google Scholar 

  27. Do, V.N.V., Lee, C.H.: Bending analyses of FG-CNTRC plates using the modified mesh-free radial point interpolation method based on the higher-order shear deformation theory. Compos. Struct. 168, 485–497 (2017). https://doi.org/10.1016/j.compstruct.2017.02.055

    Article  Google Scholar 

  28. Kumar, P., Srinivas, J.: Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layer-wise formulation. Compos. Struct. 177, 158–170 (2017). https://doi.org/10.1016/j.compstruct.2017.06.055

    Article  Google Scholar 

  29. Mehar, K., Panda, S.K.: Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings. Int. J. Comput. Methods. 14, 1750019 (2017). https://doi.org/10.1142/S0219876217500190

    Article  MathSciNet  MATH  Google Scholar 

  30. Mehar, K., Panda, S.K.: Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load. J. Aerosp. Eng. 30, 04016100 (2017). https://doi.org/10.1061/(asce)as.1943-5525.0000706

    Article  Google Scholar 

  31. Zhang, L.W., Selim, B.A.: Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy’s higher-order shear deformation theory. Compos. Struct. 160, 689–705 (2017). https://doi.org/10.1016/j.compstruct.2016.10.102

    Article  Google Scholar 

  32. Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H., Abdel Wahab, M.: Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory. Compos. Struct. 184, 633–649 (2018). https://doi.org/10.1016/j.compstruct.2017.10.025

    Article  Google Scholar 

  33. Shen, H.S., Huang, X.H., Yang, J.: Nonlinear bending of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Mech. Adv. Mater. Struct. 27, 1141–1153 (2020). https://doi.org/10.1080/15376494.2020.1716412

    Article  Google Scholar 

  34. Afshin, M., Taheri-Behrooz, F.: Interlaminar stresses of laminated composite beams resting on elastic foundation subjected to transverse loading. Comput. Mater. Sci. 96, 439–447 (2015). https://doi.org/10.1016/j.commatsci.2014.06.027

    Article  Google Scholar 

  35. Wang, X., Shi, G.: A refined laminated plate theory accounting for the third-order shear deformation and interlaminar transverse stress continuity. Appl. Math. Model. 39, 5659–5680 (2015). https://doi.org/10.1016/j.apm.2015.01.030

    Article  MathSciNet  MATH  Google Scholar 

  36. Liew, K.M., Pan, Z.Z., Zhang, L.W.: An overview of layerwise theories for composite laminates and structures: development, numerical implementation and application. Compos. Struct. 216, 240–259 (2019). https://doi.org/10.1016/j.compstruct.2019.02.074

    Article  Google Scholar 

  37. Li, M., Yan, R., Xu, L., Guedes Soares, C.: A general framework of higher-order shear deformation theories with a novel unified plate model for composite laminated and FGM plates. Compos. Struct. 261, 113560 (2021). https://doi.org/10.1016/j.compstruct.2021.113560

    Article  Google Scholar 

  38. Vodenitcharova, T., Zhang, L.C.: Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube. Int. J. Solids Struct. 43, 3006–3024 (2006). https://doi.org/10.1016/j.ijsolstr.2005.05.014

    Article  MATH  Google Scholar 

  39. Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos. Struct. 111, 205–212 (2014). https://doi.org/10.1016/j.compstruct.2013.12.035

    Article  Google Scholar 

  40. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. Part B Eng. 89, 187–218 (2016). https://doi.org/10.1016/j.compositesb.2015.11.016

    Article  Google Scholar 

  41. Lei, Z.X., Zhang, L.W., Liew, K.M.: Modeling large amplitude vibration of matrix cracked hybrid laminated plates containing CNTR-FG layers. Appl. Math. Model. 55, 33–48 (2018). https://doi.org/10.1016/j.apm.2017.10.032

    Article  MathSciNet  MATH  Google Scholar 

  42. Gholami, R., Ansari, R., Gholami, Y.: Numerical study on the nonlinear resonant dynamics of carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with various boundary conditions. Aerosp. Sci. Technol. 78, 118–129 (2018). https://doi.org/10.1016/j.ast.2018.03.043

    Article  Google Scholar 

  43. Karamanli, A., Aydogdu, M.: Vibration behaviors of two-directional carbon nanotube reinforced functionally graded composite plates. Compos. Struct. 262, 113639 (2021). https://doi.org/10.1016/j.compstruct.2021.113639

    Article  Google Scholar 

  44. Punera, D., Kant, T.: Two dimensional kinematic models for CNT reinforced sandwich cylindrical panels with accurate transverse interlaminar shear stress estimation. Thin-Walled Struct. 164, 107881 (2021). https://doi.org/10.1016/j.tws.2021.107881

    Article  Google Scholar 

  45. Kiang, C.H., Endo, M., Ajayan, P.M., Dresselhaus, G., Dresselhaus, M.S.: Size effects in carbon nanotubes. Phys. Rev. Lett. 81, 1869–1872 (1998). https://doi.org/10.1103/PhysRevLett.81.1869

    Article  Google Scholar 

  46. Chang, T., Geng, J., Guo, X.: Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2149216

    Article  Google Scholar 

  47. Liew, K.M., Pan, Z., Zhang, L.W.: The recent progress of functionally graded CNT reinforced composites and structures. Sci. China Phys. Mech. Astron. 63, 1–17 (2020). https://doi.org/10.1007/s11433-019-1457-2

    Article  Google Scholar 

  48. Yang, J., Huang, X.H., Shen, H.S.: Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative Poisson’s ratio. Int. J. Struct. Stab. Dyn. 20, 1–28 (2020). https://doi.org/10.1142/S0219455420500431

    Article  MathSciNet  Google Scholar 

  49. Shen, H.S., Li, C., Reddy, J.N.: Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio. Comput. Methods Appl. Mech. Eng. 360, 112727 (2020). https://doi.org/10.1016/j.cma.2019.112727

    Article  MathSciNet  MATH  Google Scholar 

  50. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  51. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009). https://doi.org/10.1016/j.compstruct.2009.04.026

    Article  Google Scholar 

  52. Lei, Z.X., Zhang, L.W., Liew, K.M.: Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Compos. Part B Eng. 84, 211–221 (2016). https://doi.org/10.1016/j.compositesb.2015.08.081

    Article  Google Scholar 

  53. Wattanasakulpong, N., Chaikittiratana, A.: Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Appl. Math. Model. 39, 5459–5472 (2015). https://doi.org/10.1016/j.apm.2014.12.058

    Article  MathSciNet  MATH  Google Scholar 

  54. Shen, H.S., Zhang, C.L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010). https://doi.org/10.1016/j.matdes.2010.01.048

    Article  Google Scholar 

  55. Huang, B., Ren, S., Zhao, G., Zhang, S.: Continuous interlaminar shear stress analysis of laminated FG-CNTRC beams based on an extended high-order layerwise model. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1945713

    Article  Google Scholar 

  56. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  57. Wu, C.P., Chen, S.J., Chiu, K.H.: Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech. Res. Commun. 37, 54–60 (2010). https://doi.org/10.1016/j.mechrescom.2009.10.003

    Article  MATH  Google Scholar 

  58. Wu, C.P., Li, H.Y.: An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates. Compos. Struct. 92, 2591–2605 (2010). https://doi.org/10.1016/j.compstruct.2010.01.022

    Article  Google Scholar 

  59. Singh, S.D., Sahoo, R.: Analytical solution for static and free vibration analysis of functionally graded CNT-reinforced sandwich plates. Arch. Appl. Mech. 91, 3819–3834 (2021). https://doi.org/10.1007/s00419-021-01979-1

    Article  Google Scholar 

Download references

Acknowledgements

This research project is supported by the National Key Research and Development Program of China (2020YFB1709403) and the National Natural Science Foundation of China (U1508209, 11072049). The authors would like to acknowledge the support of these funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Ren, S., Fu, Y. et al. A high-accuracy continuous shear stress multilayered plate model for FG-CNTRC structures. Acta Mech 234, 553–575 (2023). https://doi.org/10.1007/s00707-022-03382-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03382-5

Navigation