Skip to main content
Log in

Actuation of light-activated shape memory polymer laminated beams: theory and experiment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new light-activated shape memory polymer (LaSMP) exhibits great potentials in actuator application because of its adaptiveness, reconfigurableness and wireless non-contact actuations. This study aims to theoretically and experimentally demonstrate the effectiveness of LaSMP displacement control of a flexible beam. A mathematical model of the light activated forward and reverse chemical reactions of a new spiropyran-based LaSMP is proposed first, followed by a static actuation analysis of an elastic beam, with four generic boundary conditions, bonded with an LaSMP actuator. Different lengths and positions of the actuator are evaluated to show the effect of design parameters on LaSMP displacement control. Analytical results show that the optimum location of the LaSMP actuator changes as its length varies. Moreover, two laboratory validation experiments are conducted. Test results demonstrate that (1) the UV light induced shape recovery and weight lifting behaviors of LaSMP; and (2) the tip displacement response of an LaSMP actuated beam, in both forward and reverse reactions, compared favorably with the theoretical predictions. This work proves that LaSMP is promising in the application of non-contact displacement control of flexible structures and gives theoretical predictions of idealized design parameters for LaSMP actuator control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bao, Y., Tzou, H.S., Venkayya, V.B.: Analysis of non-linear piezothermoelastic laminated beams with electric and temperature effects. J. Sound Vib. 209(3), 505–518 (1998)

    Article  Google Scholar 

  2. Tzou, H.S., Ye, R.: Piezothermoelasticity and precision control of piezoelectric systems: theory and finite element analysis. J. Vib. Acoust. 116(4), 489–495 (1994)

    Article  Google Scholar 

  3. Xie, T., Rousseau, I.A.: Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8), 1852–1856 (2009)

    Article  Google Scholar 

  4. Shi, H.R., Smith, R., Tzou, H.S.: Photonic control of cylindrical shells with electro-optic photostrictive actuators. AIAA J. 42(2), 341–347 (2004)

    Article  Google Scholar 

  5. Li, H.Y., Li, H., Tzou, H.S.: Frequency control of beams and cylindrical shells with light-activated shape memory polymers. J. Vib. Acoust. 137(1), 011006 (2015)

    Article  Google Scholar 

  6. Wang, D., Fan, M., Su, Z., Tzou, H.S.: Vibration control of hemispherical shells with light-activated shape memory polymers. AIAA J. 58(3), 1369–1376 (2020)

    Article  Google Scholar 

  7. Jagur-Grodzinski, J.: Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym. Adv. Technol. 21(1), 27–47 (2010)

    Article  Google Scholar 

  8. Tzou, H.S., Chai, W.K., Hanson, M.: Dynamic actuation and quadratic magnetoelastic coupling of thin magnetostrictive shells. J. Vib. Acoust. 128(3), 385–391 (2006)

    Article  Google Scholar 

  9. Conti, S., Lenz, M., Rumpf, M.: Modeling and simulation of magnetic-shape-memory polymer composites. J. Mech. Phys. Solids 55(7), 1462–1486 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tzou, H.S.: Piezoelectric Shells: Sensing, Energy Harvesting, and Distributed Control, 2nd edn. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  11. Razzaq, M.Y., Anhalt, M., Frormann, L., Weidenfeller, B.: Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater. Sci. Eng. A 444(1), 227–235 (2007)

    Article  Google Scholar 

  12. Cho, J.W., Kim, J.W., Jung, Y.C., Goo, N.S.: Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol. Rapid Commun. 26(5), 412–416 (2005)

    Article  Google Scholar 

  13. Serrano, M.C., Ameer, G.A.: Recent insights into the biomedical applications of shape-memory polymers. Macromol. Biosci. 12(9), 1156–1171 (2012)

    Article  Google Scholar 

  14. Sokolowski, W., Metcalfe, A., Hayashi, S., Yahia, L.H., Raymond, J.: Medical applications of shape memory polymers. Biomed. Mater. 2(1), 23–27 (2007)

    Article  Google Scholar 

  15. Baer, G., Wilson, T., Matthews, D., Maitland, D.: Shape-memory behavior of thermally stimulated polyurethane for medical applications. J. Appl. Polym. Sci. 103(6), 3882–3892 (2007)

    Article  Google Scholar 

  16. Cao, D., Malakooti, S., Kulkarni, V.N., Ren, Y., Lu, H.: Nanoindentation measurement of core-skin interphase viscoelastic properties in a sandwich glass composite. Mech. Time Dependent Mater. 25, 353–363 (2021)

    Article  Google Scholar 

  17. Cao, D., Malakooti, S., Kulkarni, V.N., Ren, Y., Liu, Y., Nie, X., Qian, D., Griffith, D.T., Lu, H.: The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25(1), 71–93 (2021)

    Article  Google Scholar 

  18. Wang, X., Xu, T., de Andrade, M.J., Ramaplli, I., Cao, D., Haque, M., Roy, S., Baughman, R.H., Lu, H.: The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. In: Challenges in Mechanics of Time Dependent Materials, Volume 2, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 25–32 (2021)

  19. Lendlein, A., Jiang, H., Jünger, O., Langer, R.: Light-induced shape-memory polymers. Nature 434(7035), 879–882 (2005)

    Article  Google Scholar 

  20. Czaniková, K., Krupa, I., Ilčíková, M., Kasák, P., Chorvát, D., Valentin, M., Šlouf, M., Mosnáček, J., Mičušík, M., Omastová, M.: Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics 6(1), 063522 (2012)

    Article  Google Scholar 

  21. Mahimwalla, Z., Yager, K.G., Mamiya, J.I., Shishido, A., Priimagi, A., Barrett, C.J.: Azobenzene photomechanics: prospects and potential applications. Polym. Bull. 69(8), 967–1006 (2012)

    Article  Google Scholar 

  22. Chen, M., Huang, H., Zhu, Y., Liu, Z., Xing, X., Cheng, F., Yu, Y.: Photodeformable CLCP material: study on photo-activated microvalve applications. Appl. Phys. A 102(3), 667–672 (2011)

    Article  Google Scholar 

  23. Small, W., IV., Wilson, T.S., Benett, W.J., Loge, J.M., Maitland, D.J.: Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13(20), 8204–8213 (2005)

    Article  Google Scholar 

  24. Beblo, R.V., Weiland, L.M.: Light activated shape memory polymer characterization—part II. J. Appl. Mech. 78(6), 061016–061024 (2011)

    Article  Google Scholar 

  25. Kim, W.G.: Photocure reactions of photoreactive prepolymers with cinnamate groups. Bull. Korean Chem. Soc. 32(3), 993–999 (2011)

    Article  Google Scholar 

  26. Zhang, X., Zhou, Q., Liu, H., Liu, H.: UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter 10(21), 3748–3754 (2014)

    Article  Google Scholar 

  27. Li, H.Y., Wang, D., Tzou, H.S.: Experimental study of frequency control of LaSMP laminated beams. J. Vib. Acoust. 144, 051012 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12272175, 12102182, 11872206), the State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (Grant No. MCMS-I-0521G01) and the Fundamental Research Funds for the Central Universities (No. 3082021NS2021004). The research was carried out, in part, in the StrucTronics and Control Laboratory at Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Deng or Hornsen Tzou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Li, H., Deng, Y. et al. Actuation of light-activated shape memory polymer laminated beams: theory and experiment. Acta Mech 233, 5415–5429 (2022). https://doi.org/10.1007/s00707-022-03380-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03380-7

Navigation