Skip to main content
Log in

Guided waves in anisotropic layers: the low-frequency limits

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The low-frequency limiting velocities of guided waves propagating in homogeneous layers with the traction-free boundary conditions and arbitrary elastic anisotropy are analyzed by constructing the secular equation based on Cauchy sextic formalism coupled with the low-frequency asymptotic analysis. The combined method allows us constructing a closed form solution in terms of the eigenvalues of a three-dimensional auxiliary matrix (tensor) composed of convolutions of the elasticity tensor with the unit normal to the median plane and the wave vector. The performed analytical and numerical studies reveal (i) coinciding (up to a multiplier) the set of admissiblelimiting velocities with the spectral set of an auxiliary matrix; (ii) degeneracy of the constructed auxiliary matrix at any elastic anisotropy; and (iii) presence of no more than two low-frequency limiting velocities (not necessarily distinct) at any kind of elastic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Argatov, I., Iantchenko, A.: Rayleigh surface waves in functionally graded materials – long-wave limit. Quart. J. Mech. Appl. Math. 72(2), 197–211 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bancroft, D.: The velocity of longitudinal wave in cylindrical bars. Phys. Rev. 59, 588–593 (1941)

    Article  Google Scholar 

  3. Bochud, N., Laurent, J., Bruno, F., Royer, D., Prada, C.: Towards real-time assessment of anisotropic plate properties using elastic guided waves. J. Acoust. Soc. Am. 143(2), 1138–1147 (2018)

    Article  Google Scholar 

  4. Chadwick, P., Smith, G.D.: Foundations of the theory of surface waves in anisotropic elastic materials. In: Advances in Applied Mechanics, vol. 17, pp. 303–376. Academic Press, N.Y. (1977)

    MATH  Google Scholar 

  5. Choi, J., Chae, T.-S.: Effective stiffness and effective compressive yield strength for unit-cell model of complex truss. Int. J. Mech. Mater. Des. 11, 91–110 (2015)

    Article  Google Scholar 

  6. Cao, X., Ren, X., Zhao, T., et al.: Numerical and theoretical analysis of the dynamic mechanical behaviour of a modified rhombic dodecahedron lattice structure. Int. J. Mech. Mater. Des. 17, 271–283 (2021)

    Article  Google Scholar 

  7. Craster, R.V., Joseph, L.M., Kaplunov, J.: Long-wave asymptotic theories: The connection between functionally graded waveguides and periodic media. Wave Motion 51, 581–588 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davies, R.M.: A critical study of the Hopkinson pressure bar. Phil. Trans. Roy. Soc. London. Ser. A, Math. Phys. Sci. 240(821), 375–457 (1948)

  9. Dirrenberger, J., Forest, S., Jeulin, D.: Effective elastic properties of auxetic microstructures: anisotropy and structural applications. Int. J. Mech. Mater. Des. 9, 21–33 (2013)

    Article  Google Scholar 

  10. Djeran-Maigre, I., et al.: Solitary SH waves in two-layered traction-free plates. C.R. Mec. 336(1–2), 102–107 (2008)

    Article  MATH  Google Scholar 

  11. Djeran-Maigre, I., et al.: Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates. Acoust. Phys. 60(2), 200–207 (2014)

    Article  Google Scholar 

  12. Every, A.G., et al.: Bulk and surface acoustic wave phenomena in crystals: Observation and interpretation. Wave Motion 50(8), 1197–1217 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ewing, W.M., Jardetzky, W.S., Press, F.: Elastic Waves in Layered Media. McGraw-Hill, NY (1957)

    Book  MATH  Google Scholar 

  14. Fletcher, J.B., Erdem, J., Seats, K., Lawrence, J.: Tomographic Rayleigh wave group velocities in the Central Valley, California, centered on the Sacramento/San Joaquin Delta. J. Geophys. Res. Solid Earth 121, 2429–2446 (2016)

    Article  Google Scholar 

  15. Freedman, A.: The variation, with the Poisson ratio, of Lamb modes in a free plate. I: Behavior of individual modes. J. Sound Vibr. 137, 249–266 (1990)

    Article  Google Scholar 

  16. Goldstein, R.V., et al.: Long-wave asymptotics of Lamb waves. Mech. Solids. 52, 700–707 (2014)

    Article  Google Scholar 

  17. Higham, N.J.: Functions of Matrices Theory and Computation SIAM Philadelphia (2008)

    MATH  Google Scholar 

  18. Holden, A.N.: Longitudinal modes of elastic waves in isotropic cylinders and slabs. Bell System Tech. J. 30(4), 956–969 (1951)

    Article  MathSciNet  Google Scholar 

  19. Hopkinson, B.: A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Proc. R. Soc. Lond. A89, 411–413 (1914)

    Google Scholar 

  20. Ilyashenko, A.V., et al.: Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media. Rus. J. Nondestr. Test. 53(4), 243–259 (2017)

    Article  Google Scholar 

  21. Ilyashenko, A.V. et al.: SH waves in anisotropic (monoclinic) media. Z. angew. Math. Mech. 69(1):Paper 17 (2018a)

  22. Ilyashenko, A.V., et al.: Pochhammer-Chree waves: polarization of the axially symmetric modes. Arch. Appl. Mech. 88(8), 1385–1394 (2018)

    Article  Google Scholar 

  23. Kaplunov, J.D., Nolde, E.V.: Long-wave vibrations of a nearly incompressible isotropic plate with fixed faces. Quart. J. Mech. Appl. Math. 55, 345–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaplunov, J., Prikazchikov, D.: Asymptotic theory for Rayleigh and Rayleigh-type waves. Adv. App. Mech. 50, 1–106 (2017)

    Article  Google Scholar 

  25. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan 33, 260–268 (1972)

    Article  Google Scholar 

  26. Krantz, S., Parks, H.: The Implicit Function Theorem Modern Birkhauser Classics. Birkhauser Basel (2003)

    Google Scholar 

  27. Kuznetsov, S.V.: Love waves in stratified monoclinic media. Quart. Appl. Math. 62(4), 749–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuznetsov, S.V.: SH waves in laminated plates. Quart. Appl. Math. 64(1), 153–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuznetsov, S.V.: Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence. Waves Random Complex Media 31(6), 1540–1549 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meeker, T.R., Meitzler, A.H.: Guided wave propagation in elongated cylinders and plates, In: Physical Acoustics, (ed. Mason, W. P.) Vol. 1, Academic Press, New York (1964)

  31. Mindlin, R.D.: The thickness shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mindlin, R.D.: Waves and vibrations in isotropic, elastic plates. In: Goodier, J.N., Hoff, N. (eds.) Structural Mechanics, pp. 199–232. Pergamon Press, NY (1960)

    Google Scholar 

  33. Mindlin, R.D., McNiven, H.D.: Axially symmetric waves in elastic rods. J. Appl. Mech. 27, 145–151 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mindlin, R.D., Medick, M.A.: Extensional vibrations of elastic plates. J. Appl. Mech. 26, 561–569 (1959)

    Article  MathSciNet  Google Scholar 

  35. Niu, J., Choo, H.L., Sun, W., Mok, S.H.: Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells. Int. J. Mech. Mater. Des. 14, 443–460 (2017)

    Article  Google Scholar 

  36. Onoe, M., McNiven, H.D., Mindlin, R.D.: Dispersion of axially symmetric waves in elastic rods. J. Appl. Mech. 29, 729–734 (1962)

    Article  MATH  Google Scholar 

  37. Puckett, A.D., Peterson, M.L.: Individual longitudinal Pochhammer-Chree modes in observed experimental signals. Acoust. Research Lett. Online 6(4), 268–273 (2005)

    Article  Google Scholar 

  38. Royer, D., Clorennec, D., Prada, C.: Lamb mode spectra versus the Poisson ratio in a free isotropic elastic plate. J. Acoust. Soc. Am. 125, 3683–3687 (2009)

    Article  Google Scholar 

  39. Royer, D., Dieulesaint, E.: Elastic Waves in Solids 1. Springer, NY (1996)

    MATH  Google Scholar 

  40. Sato, Y.: Study on Surface Waves. X: Equivalency of SH waves and sound waves in a liquid. Bull. Earthquake Research Inst. (Tokyo) 32, 7–16 (1954)

    MathSciNet  Google Scholar 

  41. Sharma, M.D.: Rayleigh wave at the surface of a general anisotropic poroelastic medium: derivation of real secular equation. Proc. Roy. Soc. A. 474(2211), 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Shuvalov, A.L., Every, A.G.: On the long-wave onset of dispersion of the surface-wave velocity in coated solids. Wave Motion 45(6), 857–863 (2008)

    Article  MATH  Google Scholar 

  43. Taupin, L., Lhémery, A., Inquiété, G.: A detailed study of guided wave propagation in a viscoelastic multilayered anisotropic plate. J. Phys. Conf. Ser. 269, 012002 (2011)

    Article  Google Scholar 

  44. Valsamos, G., Casadei, F., Solomos, G.: A numerical study of wave dispersion curves in cylindrical rods with circular cross-section. Appl. Comp. Mech. 7, 99–114 (2013)

    Google Scholar 

  45. Wang, C.-Y., Achenbach, J.D.: Lamb’s problem for solids of general anisotropy. Wave Motion 24, 227–242 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zemanek, J.: An experimental and theoretical investigation of elastic wave propagation in a cylinder. J. Acoust. Soc. Am. 51, 265–283 (1972)

    Article  MATH  Google Scholar 

  47. Zhang, C., Liu, P., Zhu, D., et al.: Analysis of natural frequency for bioinspired functional gradient plates. Int. J. Mech. Mater. Des. 16, 367–386 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuznetsov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Guided waves in anisotropic layers: the low-frequency limits. Acta Mech 233, 5255–5263 (2022). https://doi.org/10.1007/s00707-022-03375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03375-4

Navigation