Skip to main content
Log in

Optimal location of FG actuator/sensor patches on an FG rotating conical shell for active control of vibration

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the optimization of piezoelectric patch positions is conducted in order to improve vibration performance of an FG-truncated conical shell. This investigation is done based upon a new optimization trend on a rotating cone for the first time, as well as, the piezoelectric material has been considered functionally graded. The vibration model is based on the classical theory, and the governing equation is obtained using the Lagrange equation. The sensor voltage change rate is selected as feedback signal to vibration control. Four different piezoelectric sets considered with different numbers of piezoelectric Patches. The settling time of the system and position of the piezoelectric patches in longitudinal direction is assumed as an objective function and optimization variable, respectively. Optimization is carried out using sequential quadratic programming and pattern search algorithms. Also, the symmetrical and asymmetrical layouts of the piezoelectric patches in order to study the settling time have been considered. Then, the effect of piezoelectric lengths and arcs on the settling time has been studied. The results show that the best position for piezoelectric placement is in a range between the middle and the base of the cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Sequential quadratic programing.

  2. Pattern search.

References

  1. Li, F.-M., Kishimoto, K., Huang, W.-H.: The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method. Mech. Res. Commun. 36(5), 595–602 (2009)

    Article  MATH  Google Scholar 

  2. Setoodeh, A., Tahani, M., Selahi, E.: Transient dynamic and free vibration analysis of functionally graded truncated conical shells with non-uniform thickness subjected to mechanical shock loading. Compos. B Eng. 43(5), 2161–2171 (2012)

    Article  Google Scholar 

  3. Daneshjou, K., et al.: Dynamic analysis and critical speed of rotating laminated conical shells with orthogonal stiffeners using generalized differential quadrature method. Latin Am. J. Solids Struct. 10, 349–390 (2013)

    Article  Google Scholar 

  4. Karroubi, R., Irani-Rahaghi, M.: Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis. Appl. Math. Mech. 40(4), 563–578 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, F.-M., Song, Z.-G., Chen, Z.-B.: Active vibration control of conical shells using piezoelectric materials. J. Vib. Control 18(14), 2234–2256 (2012)

    Article  MathSciNet  Google Scholar 

  6. Jafari, A., Khalili, S., Tavakolian, M.: Nonlinear vibration of functionally graded cylindrical shells embedded with a piezoelectric layer. Thin-Walled Struct. 79, 8–15 (2014)

    Article  Google Scholar 

  7. Heidari, Y., Irani Rahaghi, M., Arefi, M.: Free vibration analysis of a porous rotor integrated with regular patterns of circumferentially distributed functionally graded piezoelectric patches on inner and outer surfaces. J. Intell. Mater. Syst. Struct. 32(1), 82–103 (2021)

    Article  Google Scholar 

  8. Song, Z., Zhang, L., Liew, K.: Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. Compos. Struct. 158, 92–100 (2016)

    Article  Google Scholar 

  9. Biglar, M., Mirdamadi, H.R., Danesh, M.: Optimal locations and orientations of piezoelectric transducers on cylindrical shell based on gramians of contributed and undesired Rayleigh-Ritz modes using genetic algorithm. J. Sound Vib. 333(5), 1224–1244 (2014)

    Article  Google Scholar 

  10. Hasheminejad, S.M., Oveisi, A.: Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs. Int. J. Mech. Mater. Des. 12(1), 1–16 (2016)

    Article  Google Scholar 

  11. Jamshidi, R., Jafari, A.: Conical shell vibration control with distributed piezoelectric sensor and actuator layer. Compos. Struct. 256, 113107 (2021)

    Article  Google Scholar 

  12. Mohammadrezazadeh, S., Jafari, A.A.: Nonlinear vibration suppression of laminated composite conical shells on elastic foundations with magnetostrictive layers. Compos. Struct. 258, 113323 (2021)

    Article  Google Scholar 

  13. Rostami, R., Mohammadimehr, M.: Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers. Eng. Comput. 38, 1–14 (2020)

    Google Scholar 

  14. Dong, Y., et al.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, R.-B., et al.: A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dyn. 108(2), 941–958 (2022)

    Article  Google Scholar 

  16. Xi, Y., et al.: Wideband RCS Reduction of Microstrip Antenna Array Using Coding Metasurface With Low Q Resonators and Fast Optimization Method. IEEE Antennas Wirel. Propag. Lett. 21(4), 656–660 (2021)

    Article  Google Scholar 

  17. Yan, A., et al.: Novel quadruple-node-upset-tolerant latch designs with optimized overhead for reliable computing in harsh radiation environments. IEEE Trans. Emerg. Top. Comput. 10, 404–413 (2020)

    Article  Google Scholar 

  18. Hu, Y., et al.: Hovering efficiency optimization of the ducted propeller with weight penalty taken into account. Aerosp. Sci. Technol. 117, 106937 (2021)

    Article  Google Scholar 

  19. Wang, J., et al.: Control of time delay force feedback teleoperation system with finite time convergence. Front. Neurorobotics 16, 877069 (2022)

    Article  Google Scholar 

  20. Lu, S., et al.: Adaptive control of time delay teleoperation system with uncertain dynamics. Front. Neurorobotics 10, 152 (2022)

    Google Scholar 

  21. Liu, L., et al.: Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller. Ocean Eng. 257, 111493 (2022)

    Article  Google Scholar 

  22. Liu, C., et al.: Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears. J. Mech. Des. 143(12), 1–23 (2021)

    Article  Google Scholar 

  23. Tzou, H.: Piezoelectric Shells. Springer, New York (1993)

    Book  Google Scholar 

  24. Talebitooti, M.: Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends. Mech. Adv. Mater. Struct. 25(2), 155–165 (2018)

    Article  Google Scholar 

  25. Deü, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(3–5), 258–265 (2008)

    Article  Google Scholar 

  26. Gao, J., Liao, W.: Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments. J. Sound Vib. 280(1–2), 329–357 (2005)

    Article  Google Scholar 

  27. Galucio, A.C., Deu, J., Ohayon, R.: A fractional derivative viscoelastic model for hybrid active-passive damping treatments in time domain-application to sandwich beams. J. Intell. Mater. Syst. Struct. 16(1), 33–45 (2005)

    Article  Google Scholar 

  28. Li, H., Lam, K.-Y., Ng, T.-Y.: Rotating Shell Dynamics. Elsevier, New York (2005)

    MATH  Google Scholar 

  29. Es’Haghi, M., Hashemi, S.H., Fadaee, M.: Vibration analysis of piezoelectric FGM sensors using an accurate method. Int. J. Mech. Sci. 53(8), 585–594 (2011)

    Article  Google Scholar 

  30. Arefi, M.: The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers. Smart Struct. Syst. 15(5), 1345–1362 (2015)

    Article  Google Scholar 

  31. Ghannad, M., Gharouni, H.: Displacements and stresses in pressurized thick FGM cylinders with varying properties of power function based on HSDT (2012)

  32. Golpayegani, I.F., Jafari, A.A.: Critical Speed Analysis of Bi-layered Rotating Cylindrical Shells Made of Functionally Graded Materials (2017)

  33. Wang, J., Cao, Y., Lin, G.: Vibration analysis of high-speed rotating conical shell with arbitrary boundary conditions. In: Proceedings of Meetings on Acoustics 172ASA. Acoustical Society of America (2016)

  34. Sun, S., Liu, L., Cao, D.: Nonlinear travelling wave vibrations of a rotating thin cylindrical shell. J. Sound Vib. 431, 122–136 (2018)

    Article  Google Scholar 

  35. Tay, T.-T., Mareels, I., Moore, J.B.: High Performance Control. Springer, New York (1998)

    Book  MATH  Google Scholar 

  36. Wright, S., Nocedal, J.: Numerical Optimization, No. 67–68, vol. 35, p. 7. Springer, New York (1999)

    Google Scholar 

  37. Zewail, I., et al.: Maximization of total throughput using pattern search algorithm in underlay cognitive radio network. Menoufia J. Electron. Eng. Res. 26(2), 307–319 (2017)

    Article  Google Scholar 

  38. Han, Q., Chu, F.: Parametric resonance of truncated conical shells rotating at periodically varying angular speed. J. Sound Vib. 333(13), 2866–2884 (2014)

    Article  Google Scholar 

  39. Arefi, M., Karroubi, R., Irani-Rahaghi, M.: Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer. Appl. Math. Mech. 37(7), 821–834 (2016)

    Article  MathSciNet  Google Scholar 

  40. Mehralian, F., Beni, Y.T.: Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. J. Braz. Soc. Mech. Sci. Eng. 40(1), 27 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jafari Niasar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Niasar, M., Irani Rahaghi, M. & Jafari, A.A. Optimal location of FG actuator/sensor patches on an FG rotating conical shell for active control of vibration. Acta Mech 233, 5335–5357 (2022). https://doi.org/10.1007/s00707-022-03368-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03368-3

Navigation