Skip to main content
Log in

Size-dependent postbuckling for microbeams: analytical solutions using a reformulated strain gradient elasticity theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents closed-form solutions for exploring size-dependent postbuckling of Euler–Bernoulli and Timoshenko microbeams using a novel strain gradient elasticity theory. To capture the size effects of microbeams, a reformulated strain gradient elasticity theory incorporating strain gradient and couple stress effects simultaneously with only one material parameter for each effect is employed. The governing equations and boundary conditions of both Euler–Bernoulli and Timoshenko microbeams are derived using the principle of minimum potential energy and von Kármán geometric nonlinearity theory. These models can be degenerated into modified couple stress theory if the strain gradient material length-scale parameter is taken to be zero. The analytical solutions of the critical buckling load are derived for both Euler–Bernoulli and Timoshenko microbeams. The numerical results are depicted to illustrate the effects of material length-scale parameter, length-to-thickness ratio and beam thickness on the postbuckling response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu, J.O., Somnath, S., King, W.P.: Heated atomic force microscope cantilever with high resistivity for improved temperature sensitivity. Sens. Actuators A: Phys. 201, 141–147 (2013)

    Article  Google Scholar 

  2. Komijani, M., Reddy, J.N., Eslami, M.R.: Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators. J. Mech. Phys. Solids. 63, 214–227 (2014)

    Article  MathSciNet  Google Scholar 

  3. Jabbari, G., Shabani, R., Rezazadeh, G.: Nonlinear vibrations of an electrostatically actuated microresonator in an incompressible fluid cavity based on the modified couple stress theory. J. Comput. Nonlinear Dyn. 11(4), 041029 (2016)

    Article  Google Scholar 

  4. Kivi, A.R., Azizi, S.: On the dynamics of a micro-gripper subjected to electrostatic and piezoelectric excitations. Int. J. Non-Linear Mech. 77, 183–192 (2015)

    Article  Google Scholar 

  5. Askari, A.R., Tahani, M.: Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. Appl. Math. Model. 39(2), 934–946 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xiao, Y., Wang, B., Zhou, S.: Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: a size-dependent model. Mech. Res. Commun. 66, 7–14 (2015)

    Article  Google Scholar 

  7. Gholami, R., Ansari, R., Rouhi, H.: Studying the effects of small scale and Casimir force on the non-linear pull-in instability and vibrations of FGM microswitches under electrostatic actuation. Int. J. Non Linear Mech. 77, 193–207 (2015)

    Article  Google Scholar 

  8. Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S., et al.: Bending and buckling of carbon nanotubes under large strain. Nature 389(6651), 582–584 (1997)

    Article  Google Scholar 

  9. Lourie, O., Cox, D., Wagner, H.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81(8), 1638 (1998)

    Article  Google Scholar 

  10. Waters, J., Riester, L., Jouzi, M., Guduru, P., Xu, J.: Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression. Appl. Phys. Lett. 85(10), 1787–1789 (2004)

    Article  Google Scholar 

  11. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to micro cantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  12. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  13. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  14. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  16. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  18. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Koiter, W.T.: Couple stresses in the theory of elasticity: I and II. Proc. K. Ned. Akad. Wet (B) 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  20. Toupin, R.A.: Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  Google Scholar 

  21. Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur. J. Mech. A/Solids. 61, 92–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fleck, N., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  23. Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Biomed. Mater. 8, 231–282 (1997)

    Article  Google Scholar 

  24. Gao, X.L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids. Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  25. Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(3751), 3759 (2009)

    MATH  Google Scholar 

  26. Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of microbeams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MATH  Google Scholar 

  28. Wang, B., Zhao, J., Zhou, S.: A microscale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids. 29, 591–599 (2010)

    Article  MATH  Google Scholar 

  29. Karamanli, A., Vo, T.P.: Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Compos. Struct. 246, 112401 (2020)

    Article  Google Scholar 

  30. Mohammadi, H., Mahzoon, M.: Thermal effects on postbuckling of nonlinear microbeams based on the modified strain gradient theory. Compos. Struct. 106, 764–776 (2013)

    Article  Google Scholar 

  31. Li, L., Hu, Y.: Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 120, 159–170 (2017)

    Article  Google Scholar 

  32. Sahmani, S., Safaei, B.: Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl. Math. Model. 82, 336–358 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, F., Chong, A.C.M., Lam, D.C.C., et al.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  34. Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  35. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yin, S.H., Deng, Y., Yu, T.T., Gu, S.T., Zhang, G.Y.: Isogeometric analysis for non-classical Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Appl. Math. Model. 89, 470–485 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yin, S.H., Deng, Y., Zhang, G.Y., Yu, T.T.: A new isogeometric Timoshenko beam model incorporating microstructures and surface energy effects. Math. Mech. Solids. 25, 2005–2022 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids. 59, 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Khorshidi, M.A., Shariati, M., Emam, S.A.: Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. Int. J. Mech. Sci. 110, 160–169 (2016)

    Article  Google Scholar 

  40. Chen, X.C., Li, Y.H.: Size-dependent post-buckling behaviors of geometrically imperfect microbeams. Mech. Res. Commun. 88, 25–33 (2018)

    Article  Google Scholar 

  41. Taati, E.: On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment. Int. J. Eng. Sci. 128, 63–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Babaei, H., Eslami, M.R.: Size-dependent vibrations of thermally pre/post-buckled FG porous micro-tubes based on modified couple stress theory. Int. J. Mech. Sci. 180, 105694 (2020)

    Article  Google Scholar 

  43. Zhang, G.Y., Gao, X.L.: A new Bernoulli–Euler beam model based on a reformulated strain gradient elasticity theory. Math. Mech. Solids. 25, 630–643 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, G.Y., Zheng, C.Y., Mi, C.W., Gao, X.L.: A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2020.18700

    Article  Google Scholar 

  45. Hong, J., Wang, S.P., Zhang, G.Y., Mi, C.W.: Bending, buckling and vibration analysis of complete microstructure-dependent functionally graded material microbeams. Int. J. Appl. Mech. 13, 2150057 (2021)

    Article  Google Scholar 

  46. Yin, S.H., Xiao, Z.B., Deng, Y., Zhang, G.Y., Liu, J.G., Gu, S.T.: Isogeometric analysis of size-dependent Bernoulli–Euler beam based on a reformulated strain gradient elasticity theory. Comput. Struct. 253, 106577 (2021)

    Article  Google Scholar 

  47. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  48. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shaat, M.: A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos. Struct. 201, 446–454 (2018)

    Article  Google Scholar 

  50. Zhang, G.Y., Gao, X.L., Zheng, C.Y., Mi, C.W.: A non-classical Bernoulli–Euler beam model based on a simplified micromorphic elasticity theory. Mech. Mater. 161, 103967 (2021)

    Article  Google Scholar 

  51. Gao, X.L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  52. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  53. Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mohammad-Abadi, M., Daneshmehr, A.R.: Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int. J. Eng. Sci. 74, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12002086, 52075465), the Hunan Provincial Natural Science Foundation of China (2021JJ30649), the Hunan Science Foundation for Distinguished Young Scholars (Grant No.2019JJ20015), the science and technology innovation Program of Hunan Province (Grant No. 2020RC4038) and the Education Department of Hunan Province (Grant No. 20B565). The financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongye Zhang or Tinh Quoc Bui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Xiao, Z., Zhang, G. et al. Size-dependent postbuckling for microbeams: analytical solutions using a reformulated strain gradient elasticity theory. Acta Mech 233, 5045–5060 (2022). https://doi.org/10.1007/s00707-022-03360-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03360-x

Navigation