Skip to main content
Log in

Generalized multi-symplectic method for vibration of cracked simply supported beam

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The effects of cracks on the dynamic behavior of engineering structures affect the structure safety. In this paper, a generalized multi-symplectic approach is developed to investigate the effects of crack on a dynamic behavior of a simply supported beam in detail. First, the effect of the crack on the bending stiffness of the simply supported beam is expressed by an equivalent bending stiffness and the dynamic model with variable coefficients is established to describe the transverse vibration of the cracked beam. Then, the approximate symmetric form of the dynamic model is constructed and its dynamic symmetry breaking factors are discussed. The Preissmann scheme of the approximate symmetric form is constructed based on the generalized multi-symplectic theory. In numerical simulations, the structure-preserving properties of the Preissmann scheme are illustrated and the validity of the dynamic model is verified. Then, the effects of the crack on the vibration of the beam are investigated by using the generalized multi-symplectic method in detail. The numerical results presented prove that the proposed generalized multi-symplectic method is an effective approach to investigate the dynamic behavior of cracked structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ostachowicz, W.M., Krawczuk, M.: Vibration analysis of a cracked beam. Comput. Struct. 36, 245–250 (1990). https://doi.org/10.1016/0045-7949(90)90123-j

    Article  Google Scholar 

  2. Wauer, J.: On the dynamics of cracked rotors: a literature survey. Appl. Mech. Rev. 43, 13–17 (1990). https://doi.org/10.1115/1.3119157

    Article  Google Scholar 

  3. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55, 831–857 (1996). https://doi.org/10.1016/0013-7944(94)00175-8

    Article  Google Scholar 

  4. Bovsunovsky, A., Surace, C.: Non-linearities in the vibrations of elastic structures with a closing crack: a state of the art review. Mech. Syst. Signal Process. 62–63, 129–148 (2015). https://doi.org/10.1016/j.ymssp.2015.01.021

    Article  Google Scholar 

  5. Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: a state of the art review. Mech. Syst. Signal Process. 22, 763–789 (2008). https://doi.org/10.1016/j.ymssp.2007.11.009

    Article  Google Scholar 

  6. Chen, X., Wang, S., Qiao, B., Chen, Q.: Basic research on machinery fault diagnostics: past, present, and future trends. Front. Mech. Eng. 13, 264–291 (2018). https://doi.org/10.1007/s11465-018-0472-3

    Article  Google Scholar 

  7. Kushwaha, N., Patel, V.N.: Modelling and analysis of a cracked rotor: a review of the literature and its implications. Arch. Appl. Mech. 90, 1215–1245 (2020). https://doi.org/10.1007/s00419-020-01667-6

    Article  Google Scholar 

  8. Chondros, T.G., Dimarogonas, A.D.: Vibration of a cracked cantilever beam. J. Vib. Acoust. Trans. ASME. 120, 742–746 (1998). https://doi.org/10.1115/1.2893892

    Article  Google Scholar 

  9. Selmi, A.: Free vibration of multi-cracked beams. Struct. Eng. Mech. 79, 441–449 (2021). https://doi.org/10.12989/sem.2021.79.4.441

    Article  Google Scholar 

  10. Sekhar, A.S., Prasad, P.B.: Dynamic analysis of a rotor system considering a slant crack in the shaft. J. Sound Vib. 208, 457–474 (1997). https://doi.org/10.1006/jsvi.1997.1222

    Article  Google Scholar 

  11. Sekhar, A.S.: Model-based identification of two cracks in a rotor system. Mech. Syst. Signal Process. 18, 977–983 (2004). https://doi.org/10.1016/s0888-3270(03)00041-4

    Article  Google Scholar 

  12. Sekhar, A.S.: Multiple cracks effects and identification. Mech. Syst. Signal Process. 22, 845–878 (2008). https://doi.org/10.1016/j.ymssp.2007.11.008

    Article  Google Scholar 

  13. Adewusi, S.A., Al-Bedoor, B.O.: Wavelet analysis of vibration signals of an overhang rotor with a propagating transverse crack. J. Sound Vib. 246, 777–793 (2001). https://doi.org/10.1006/jsvi.2000.3611

    Article  Google Scholar 

  14. Zhu, C.S., Robb, D.A., Ewins, D.J.: The dynamics of a cracked rotor with an active magnetic bearing. J. Sound Vib. 265, 469–487 (2003). https://doi.org/10.1016/s0022-460x(03)00174-3

    Article  Google Scholar 

  15. Wan, F.Y., Xu, Q.Y., Li, S.T.: Vibration analysis of cracked rotor sliding bearing system with rotor-stator rubbing by harmonic wavelet transform. J. Sound Vib. 271, 507–518 (2004). https://doi.org/10.1016/s0022-460x(03)00277-3

    Article  Google Scholar 

  16. Zou, J., Chen, J.: A comparative study on time-frequency feature of cracked rotor by Wigner-Ville distribution and wavelet transform. J. Sound Vib. 276, 1–11 (2004). https://doi.org/10.1016/j.jsv.2003.07.002

    Article  Google Scholar 

  17. Sinou, J.J., Lees, A.W.: A non-linear study of a cracked rotor. Eur. J. Mech. Solids. 26, 152–170 (2007). https://doi.org/10.1016/j.euromechsol.2006.04.002

    Article  MATH  Google Scholar 

  18. Sinou, J.J., Lees, A.W.: The influence of cracks in rotating shafts. J. Sound Vib. 285, 1015–1037 (2005). https://doi.org/10.1016/j.jsv.2004.09.008

    Article  Google Scholar 

  19. Sinou, J.J., Faverjon, B.: The vibration signature of chordal cracks in a rotor system including uncertainties. J. Sound Vib. 331, 138–154 (2012). https://doi.org/10.1016/j.jsv.2011.08.001

    Article  Google Scholar 

  20. Darpe, A.K.: Coupled vibrations of a rotor with slant crack. J Sound Vib. 305, 172–193 (2007). https://doi.org/10.1016/j.jsv.2007.03.079

    Article  Google Scholar 

  21. Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311, 953–972 (2008). https://doi.org/10.1016/j.jsv.2007.09.033

    Article  Google Scholar 

  22. Cheng, L., Li, N., Chen, X.F., He, Z.J.: The influence of crack breathing and imbalance orientation angle on the characteristics of the critical speed of a cracked rotor. J. Sound Vib. 330, 2031–2048 (2011). https://doi.org/10.1016/j.jsv.2010.11.012

    Article  Google Scholar 

  23. Han, Q., Chu, F.: Dynamic response of cracked rotor-bearing system under time-dependent base movements. J Sound Vib. 332, 6847–6870 (2013). https://doi.org/10.1016/j.jsv.2013.07.025

    Article  Google Scholar 

  24. Lu, Z., Hou, L., Chen, Y., Sun, C.: Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft. Nonlinear Dyn. 83, 169–185 (2016). https://doi.org/10.1007/s11071-015-2317-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Al-Shudeifat, M.A.: New backward whirl phenomena in intact and cracked rotor systems. J. Sound Vib. 443, 124–138 (2019). https://doi.org/10.1016/j.jsv.2018.11.038

    Article  Google Scholar 

  26. Peng, H., He, Q.: The effects of the crack location on the whirl motion of a breathing cracked rotor with rotational damping. Mech. Syst. Signal Process. 123, 626–647 (2019). https://doi.org/10.1016/j.ymssp.2019.01.029

    Article  Google Scholar 

  27. Yang, Y., Wu, Q., Wang, Y., Qin, W., Lu, K.: Dynamic characteristics of cracked uncertain hollow-shaft. Mech. Syst. Signal Process. 124, 36–48 (2019). https://doi.org/10.1016/j.ymssp.2019.01.035

    Article  Google Scholar 

  28. Rizos, P.F., Aspragathos, N., Dimarogonas, A.D.: Identification of crack location and magnitude in a cantilever beam from the vibration modes. J. Sound Vib. 138, 381–388 (1990). https://doi.org/10.1016/0022-460x(90)90593-o

    Article  Google Scholar 

  29. Krawczuk, M., Ostachowicz, W.M.: Modeling and vibration analysis of a cantilever composite beam with a transverse open crack. J. Sound Vib. 183, 69–89 (1995). https://doi.org/10.1006/jsvi.1995.0239

    Article  MATH  Google Scholar 

  30. Sundermeyer, J.N., Weaver, R.L.: On crack identification and characterization in a beam by nonlinear vibration analysis. J. Sound Vib. 183, 857–871 (1995). https://doi.org/10.1006/jsvi.1995.0290

    Article  MATH  Google Scholar 

  31. Ruotolo, R., Surace, C., Crespo, P., Storer, D.: Harmonic analysis of the vibrations of a cantilevered beam with a closing crack. Comput. Struct. 61, 1057–1074 (1996). https://doi.org/10.1016/0045-7949(96)00184-8

    Article  MATH  Google Scholar 

  32. Chondros, T.G., Dimarogonas, A.D., Yao, J.: Vibration of a beam with a breathing crack. J. Sound Vib. 239, 57–67 (2001). https://doi.org/10.1006/jsvi.2000.3156

    Article  Google Scholar 

  33. Chondros, T.G., Dimarogonas, A.D., Yao, J.: A continuous cracked beam vibration theory. J Sound Vib. 215, 17–34 (1998). https://doi.org/10.1006/jsvi.1998.1640

    Article  MATH  Google Scholar 

  34. Kisa, M., Brandon, J., Topcu, M.: Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods. Comput. Struct. 67, 215–223 (1998). https://doi.org/10.1016/s0045-7949(98)00056-x

    Article  MATH  Google Scholar 

  35. Yokoyama, T., Chen, M.C.: Vibration analysis of edge-cracked beams using a line-spring model. Eng. Fract. Mech. 59, 403–409 (1998). https://doi.org/10.1016/s0013-7944(97)80283-4

    Article  Google Scholar 

  36. Fernandez-Saez, J., Rubio, L., Navarro, C.: Approximate calculation of the fundamental frequency for bending vibrations of cracked beams. J. Sound Vib. 225, 345–352 (1999). https://doi.org/10.1006/jsvi.1999.2251

    Article  Google Scholar 

  37. Chaudhari, T.D., Maiti, S.K.: A study of vibration of geometrically segmented beams with and without crack. Int. J. Solids Struct. 37, 761–779 (2000). https://doi.org/10.1016/s0020-7683(99)00054-2

    Article  MATH  Google Scholar 

  38. Saavedra, P.N., Cuitino, L.A.: Crack detection and vibration behavior of cracked beams. Comput. Struct. 79, 1451–1459 (2001). https://doi.org/10.1016/s0045-7949(01)00049-9

    Article  Google Scholar 

  39. Zheng, D.Y., Fan, S.C.: Vibration and stability of cracked hollow-sectional beams. J. Sound Vib. 267, 933–954 (2003). https://doi.org/10.1016/s0022-460x(02)01605-x

    Article  Google Scholar 

  40. Loya, J.A., Rubio, L., Fernandez-Saez, J.: Natural frequencies for bending vibrations of Timoshenko cracked beams. J. Sound Vib. 290, 640–653 (2006). https://doi.org/10.1016/j.jsv.2005.04.005

    Article  Google Scholar 

  41. Yang, J., Chen, Y., Xiang, Y., Jia, X.L.: Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. J. Sound Vib. 312, 166–181 (2008). https://doi.org/10.1016/j.jsv.2007.10.034

    Article  Google Scholar 

  42. Labib, A., Kennedy, D., Featherston, C.: Free vibration analysis of beams and frames with multiple cracks for damage detection. J. Sound Vib. 333, 4991–5003 (2014). https://doi.org/10.1016/j.jsv.2014.05.015

    Article  Google Scholar 

  43. Yang, E.C., Zhao, X., Li, Y.H.: Free vibration analysis for cracked FGM beams by means of a continuous beam model. Shock Vib. (2015). https://doi.org/10.1155/2015/197049

    Article  Google Scholar 

  44. Han, H., Liu, L., Cao, D.: Analytical approach to coupled bending-torsional vibrations of cracked Timoshenko beam. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2019.105235

    Article  Google Scholar 

  45. Sahu, S.K., Das, P.: Experimental and numerical studies on vibration of laminated composite beam with transverse multiple cracks. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2019.106398

    Article  Google Scholar 

  46. Song, M., Gong, Y., Yang, J., Zhu, W., Kitipornchai, S.: Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2019.115115

    Article  Google Scholar 

  47. El Arem, S.: On the mechanics of beams and shafts with cracks: a standard and generic approach. Eur. J. Mech. Solids (2021). https://doi.org/10.1016/j.euromechsol.2020.104088

    Article  MathSciNet  MATH  Google Scholar 

  48. Mao, J.J., Guo, L.J., Zhang, W.: Vibration and frequency analysis of edge-cracked functionally graded graphene reinforced composite beam with piezoelectric actuators. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01546-w

    Article  Google Scholar 

  49. Hu, W., Wang, Z., Zhao, Y., Deng, Z.: Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Lett. 103, 106207 (2020). https://doi.org/10.1016/j.aml.2019.106207

    Article  MathSciNet  MATH  Google Scholar 

  50. Hu, W.P., Deng, Z.C., Han, S.M., Zhang, W.R.: Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. J. Comput. Phys. 235, 394–406 (2013). https://doi.org/10.1016/j.jcp.2012.10.032

    Article  MathSciNet  MATH  Google Scholar 

  51. Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 10(1115/1), 4003700 (2010)

    Google Scholar 

  52. Yao, W., Zhong, W.X., Lim, C.W.: Symplectic elasticity World. Scientific Publishing Co., Singapore (2009)

    Book  MATH  Google Scholar 

  53. Hu, W., Huai, Y., Xu, M., Deng, Z.: Coupling dynamic characteristics of simplified model for tethered satellite system. Acta. Mech. Sin. 37, 1245–1254 (2021). https://doi.org/10.1007/s10409-021-01108-9

    Article  MathSciNet  Google Scholar 

  54. Hu, W., Xu, M., Song, J., Gao, Q., Deng, Z.: Coupling dynamic behaviors of flexible stretching hub-beam system. Mech. Syst. Signal Process. 151, 107389 (2021). https://doi.org/10.1016/j.ymssp.2020.107389

    Article  Google Scholar 

  55. Hu, W., Xu, M., Jiang, R., Zhang, C., Deng, Z.: Wave propagation in non-homogeneous asymmetric circular plate. Int. J. Mech. Mater. Des. 17, 885–898 (2021). https://doi.org/10.1007/s10999-021-09556-8

    Article  Google Scholar 

  56. Hu, W., Huai, Y., Xu, M., Feng, X., Jiang, R., Zheng, Y., et al.: Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mech. Syst. Signal Process. 159, 107833 (2021). https://doi.org/10.1016/j.ymssp.2021.107833

    Article  Google Scholar 

  57. Hu, W., Zhang, C., Deng, Z.: Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear Sci. Numer. Simul. 84, 10519 (2020). https://doi.org/10.1016/j.cnsns.2020.105199

    Article  MathSciNet  MATH  Google Scholar 

  58. Hu, W., Yu, L., Deng, Z.: Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mech. Solida Sin. 33, 51–60 (2020). https://doi.org/10.1007/s10338-019-00132-4

    Article  Google Scholar 

  59. Hu, W., Ye, J., Deng, Z.: Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vib. 475, 115286 (2020). https://doi.org/10.1016/j.jsv.2020.115286

    Article  Google Scholar 

  60. Hu, W., Xi, X., Zhai, Z., Cui, P., Zhang, F., Deng, Z.: Symplectic analysis on coupling behaviors of spatial flexible damping beam. Acta Mech. Solida Sin. (2022). https://doi.org/10.1007/s10338-021-00297-x

    Article  Google Scholar 

  61. Hu, W., Du, F., Zhai, Z., Zhang, F., Deng, Z.: Symplectic analysis on dynamic behaviors of tethered tug-debris system. Acta Astronaut. 192, 182–189 (2022). https://doi.org/10.1016/j.actaastro.2021.12.028

    Article  Google Scholar 

  62. Hu, W., Xu, M., Zhang, F., Xiao, C., Deng, Z.: Dynamic analysis on flexible hub-beam with step-variable cross-section. Mech. Syst. Signal Process. 180, 109423 (2022). https://doi.org/10.1016/j.ymssp.2022.109423

    Article  Google Scholar 

  63. Peng, H., Li, F., Liu, J., Ju, Z.: A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models. IEEE Trans. Ind. Electron. 67, 3819–3829 (2020). https://doi.org/10.1109/tie.2019.2916390

    Article  Google Scholar 

  64. Peng, H., Gao, Q., Wu, Z., Zhong, W.: Symplectic approaches for solving two-point boundary-value problems. J. Guid. Control. Dyn. 35, 653–659 (2012). https://doi.org/10.2514/1.55795

    Article  Google Scholar 

  65. Swamidas, A.S.J., Yang, X., Seshadri, R.: Identification of cracking in beam structures using Timoshenko and Euler formulations. J. Eng. Mech. 130, 1297–1308 (2004). https://doi.org/10.1061/(asce)0733-9399(2004)130:11(1297)

    Article  Google Scholar 

  66. Noether E.: Invariante Variationsprobleme. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. KI, 235–257 (1918)

  67. Feng K.: On difference schemes and symplectic geometry. In: Proceeding of the 1984 Beijing symposium on differential geometry and differential equations. pp. 42–58. Science Press: Beijing (1984)

  68. Bridges TJ.: Multi-symplectic structures and wave propagation. In: Mathematical Proceedings of the Cambridge Philosophical Society. 121,147–90 (1997) https://doi.org/10.1017/s0305004196001429.

  69. Zhao, P.F., Qin, M.Z.: Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J. Phys. Math. Gen. 33, 3613–3626 (2000). https://doi.org/10.1088/0305-4470/33/18/308

    Article  MathSciNet  MATH  Google Scholar 

  70. Preissmann A.: Propagation des intumescences dans les canaux et rivieres. First Congress French Association for Computation. Grenoble1961. pp. 433–442.

  71. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss-Kronrod quadrature rules. Math. Comput. 69, 1035–1052 (2000). https://doi.org/10.2307/2585013

    Article  MathSciNet  MATH  Google Scholar 

  72. Laurie, D.P.: Calculation of Gauss-Kronrod quadrature rules. Math. Comput. 66, 1133–1145 (1997). https://doi.org/10.2307/2153763

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Thomas J Bridges of Surrey University and Yinghui Li of Southwest Jiaotong University for giving us several good suggestions. The research is supported by the National Natural Science Foundation of China (12172281, 11972284 and 12102339), Fund for Distinguished Young Scholars of Shaanxi Province (2019JC-29), Foundation Strengthening Programme Technical Area Fund (2021-JCJQ-JJ-0565), the Fund of the Science and Technology Innovation Team of Shaanxi (2022TD-61), the Fund of the Youth Innovation Team of Shaanxi Universities (22JP055), Natural Science Basic Research Program of Shaanxi (2022JM-029) and the Doctoral Dissertation Innovation Fund of Xi'an University of Technology (252072016, 252072115). The authors declare that they have no conflict of interest with the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhang, P., Wang, J. et al. Generalized multi-symplectic method for vibration of cracked simply supported beam. Acta Mech 233, 4805–4816 (2022). https://doi.org/10.1007/s00707-022-03350-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03350-z

Navigation