Skip to main content
Log in

Nonlinear dynamic behavior of a damaged laminated shell structure under time-dependent mechanical loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The time-dependent displacement behavior of a curved shell panel is predicted computationally using a MATLAB code considering the variable types of mechanical loading. The computational code has been developed by a generic nonlinear mathematical model of the damaged shell structure in the framework of higher-order displacement polynomial and Green–Lagrange strain kinematics. The mathematical model and the subsequent computer code are capable of analyzing different shell configurations (cylindrical, elliptical, spherical, etc.), including the damage types, i.e., delamination, crack, and the combination of both. The finite element (FE) method is used considering a sub-laminate approach for the incorporation of separation among the layers at the mid-plane. Further, the time-dependent displacement responses are evaluated using the proposed nonlinear finite element code derived in MATLAB using Newmark’s time integration. Moreover, the direct iterative techniques have been utilized to handle the nonlinear response analysis. The FE solution convergence and its exactness has been proven by equating the outcomes presented in the published literature. The combined effect of crack and delamination, various geometrical input parameters (curvature ratio, shell geometry, and modular ratio) of the damaged structure are presented for numerous mathematical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Miao, F., Sun, G., Chen, K.: Transient response analysis of balanced laminated composite beams by the method of reverberation-ray matrix. Int. J. Mech. Sci. 77, 121–129 (2013). https://doi.org/10.1016/j.ijmecsci.2013.09.029

    Article  Google Scholar 

  2. Marur, S.R., Kant, T.: Transient dynamics of laminated beams: an evaluation with a higher-order refined theory. Compos. Struct. 41(1), 1–11 (1998)

    Article  Google Scholar 

  3. Wang, Y.Y., Lam, K.Y., Liu, G.R.: A strip element method for the transient analysis of symmetric laminated plates. Int. J. Solids Struct. 38(2), 241–259 (2001)

    Article  MATH  Google Scholar 

  4. Deshpande, V., Myers, O., Fadel, G., Li, S.: Transient deformation and curvature evolution during the snap-through of a bistable laminate under asymmetric point load. Compos. Sci. Technol. 211, 108871 (2021)

    Article  Google Scholar 

  5. Chanda, A., Sahoo, R.: Trigonometric zigzag theory for free vibration and transient responses of cross-ply laminated composite plates. Mech. Mater. 155, 103732 (2021). https://doi.org/10.1016/j.mechmat.2020.103732

    Article  Google Scholar 

  6. Kumar, Y.S., Mukhopadhyay, M.: Transient response analysis of laminated stiffened plates. Compos. Struct. 58(1), 97–107 (2002)

    Article  Google Scholar 

  7. Sahoo, S.S., Hirwani, C.K., Panda, S.K., Sen, D.: Numerical analysis of vibration and transient behaviour of laminated composite curved shallow shell structure: an experimental validation. Sci. Iran. 25, 2218–2232 (2018). https://doi.org/10.24200/sci.2017.4346

    Article  Google Scholar 

  8. Pölöskei, T., Szekrenyes, A.: Dynamic stability analysis of delaminated composite beams in frequency domain using a unified beam theory with higher order displacement continuity. Compos. Struct. 272, 114173 (2021). https://doi.org/10.1016/j.compstruct.2021.114173

    Article  Google Scholar 

  9. Pan, D., Jiang, W., Dai, F.: Dynamic analysis of bi-stable hybrid symmetric laminate. Compos. Struct. 225, 111158 (2019). https://doi.org/10.1016/j.compstruct.2019.111158

    Article  Google Scholar 

  10. Katariya, P., Panda, S.K.: Simulation study of transient responses of laminated composite sandwich plate. Proc. ASME. (2018). https://doi.org/10.1115/GTINDIA2017-4846

    Article  Google Scholar 

  11. Katariya, P.V., Mehar, K., Kumar, S.: Nonlinear dynamic responses of layered skew sandwich composite structure and experimental validation. Int. J. Non. Linear. Mech. 125, 103527 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103527

    Article  Google Scholar 

  12. Hirwani, C.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K., De, A.K.: Dynamic behaviour of delaminated composite plate under blast loading. Proc. ASME. (2018). https://doi.org/10.1115/GTINDIA2017-4847

    Article  Google Scholar 

  13. Biswas, D., Ray, C.: Comparative study on transient response analysis of hybrid laminated composite plates with experimental verification. J. Sound Vib. 453, 43–64 (2019). https://doi.org/10.1016/j.jsv.2019.04.007

    Article  Google Scholar 

  14. Sahu, S.K., Datta, P.K.: Dynamic stability of laminated composite curved panels with cutouts. J. Eng. Mech. 129, 1245–1253 (2003). https://doi.org/10.1061/(asce)0733-9399(2003)129:11(1245)

    Article  Google Scholar 

  15. Sahu, S.K., Datta, P.K.: Dynamic stability of curved panels with cutouts. J. Sound Vib. 251, 683–696 (2002). https://doi.org/10.1006/jsvi.2001.3961

    Article  Google Scholar 

  16. Patel, S.N., Datta, P.K., Sheikh, A.H.: Dynamic stability analysis of stiffened shell panels with cutouts. J. Appl. Mech. Trans. ASME. 76, 1–13 (2009). https://doi.org/10.1115/1.3086595

    Article  Google Scholar 

  17. Srivastava, A.K.L., Datta, P.K., Sheikh, A.H.: Dynamic stability of stiffened plates with cutout subjected to harmonic in-plane partial edge loading. Int. J. Crashworthiness. 10, 403–417 (2005). https://doi.org/10.1533/ijcr.2005.0358

    Article  Google Scholar 

  18. Turkmen, H.S.: The dynamic behavior of composite panels subjected to air blast loading. In: Explosion Blast Response of Composites, pp. 57–84. Elsevier, Amsterdam (2017)

    Chapter  Google Scholar 

  19. Dewangan, H.C., Panda, S.K.: Numerical transient responses of cut-out borne composite panel and experimental validity. Proc. Inst Mech. Eng. Part G J. Aerosp. Eng. 235, 1521–1536 (2021). https://doi.org/10.1177/0954410020977344

    Article  Google Scholar 

  20. Khalfi, B., Ross, A.: Transient and harmonic response of a sandwich with partial constrained layer damping: a parametric study. Compos. Part B Eng. 91, 44–55 (2016). https://doi.org/10.1016/j.compositesb.2015.12.037

    Article  Google Scholar 

  21. Devarajan, B., Kapania, R.K.: Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis. Compos. Struct. 238, 111881 (2020). https://doi.org/10.1016/j.compstruct.2020.111881

    Article  Google Scholar 

  22. Miglani, J., Devarajan, B., Kapania, R.K.: Thermal buckling analysis of periodically supported laminated beams using isogeometric analysis. AIAA/ASCE/AHS/ASC. (2018). https://doi.org/10.2514/6.2018-1224

    Article  Google Scholar 

  23. Al-furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R.: Thin-walled structures dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact. Thin-Walled Struct. 163, 107706 (2021). https://doi.org/10.1016/j.tws.2021.107706

    Article  Google Scholar 

  24. Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mahapatra, S.S.: Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure. J. Aerosp. Eng. 30(5), 04017045 (2017)

    Article  Google Scholar 

  25. Jensen, S.M., Bak, B.L.V., Bender, J.J., Carreras, L., Lindgaard, E.: Transient delamination growth in GFRP laminates with fibre bridging under variable amplitude loading in G-control. Compos. Part B Eng. 225, 109296 (2021). https://doi.org/10.1016/j.compositesb.2021.109296

    Article  Google Scholar 

  26. Civalek, Ö., Avcar, M.: Free Vibration and Buckling Analyses of CNT Reinforced Laminated Non-Rectangular Plates by Discrete Singular Convolution Method. Springer, London (2020)

    Google Scholar 

  27. Zhang, J., Ullah, S., Gao, Y., Avcar, M., Civalek, O.: Analysis of orthotropic plates by the two-dimensional generalized FIT method. Comput. Concr. 26, 421–427 (2020)

    Google Scholar 

  28. Hadji, L., Avcar, M., Zouatnia, N.: Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation. Mater. Today Proc. 53, 153–160 (2022). https://doi.org/10.1016/j.matpr.2021.12.485

    Article  Google Scholar 

  29. Sobhani, E., Masoodi, A.R., Civalek, Ö., Avcar, M.: Natural frequency analysis of FG-GOP/ polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers. Eng. Anal. Bound. Elem. 138, 369–389 (2022). https://doi.org/10.1016/j.enganabound.2022.03.009

    Article  MathSciNet  MATH  Google Scholar 

  30. Sobhani, E., Arbabian, A., Civalek, Ö., Avcar, M.: The free vibration analysis of hybrid porous nanocomposite joined hemispherical – cylindrical – conical shells. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01453-0

    Article  Google Scholar 

  31. Ghoshal, A., Kim, H.S., Chattopadhyay, A., Prosser, W.H.: Effect of delamination on transient history of smart composite plates. Finite Elem. Anal. Des. 41, 850–874 (2005). https://doi.org/10.1016/j.finel.2004.10.006

    Article  MathSciNet  Google Scholar 

  32. Yang, S.C., Yang, Q.S.: Geometrically nonlinear transient response of laminated plates with flexible supports. Int. J. Struct. Stab. Dyn. 18(02), 1871002 (2018)

    Article  MathSciNet  Google Scholar 

  33. Yang, S., Yang, Q.: Geometrically nonlinear transient response of laminated plates with nonlinear elastic restraints. Shock Vib. 2017, 1–9 (2017). https://doi.org/10.1155/2017/2189420

    Article  Google Scholar 

  34. Choi, I.H.: Geometrically nonlinear transient analysis of composite laminated plate and shells subjected to low-velocity impact. Compos. Struct. 142, 7–14 (2016). https://doi.org/10.1016/j.compstruct.2016.01.070

    Article  Google Scholar 

  35. Rezaiee-Pajand, M., Estiri, H.: Geometrically nonlinear analysis of shells by various dynamic relaxation methods. World J. Eng. (2017). https://doi.org/10.1108/WJE-10-2016-0109

    Article  MATH  Google Scholar 

  36. Ghayesh, M.H., Farokhi, H., Gholipour, A., Tavallaeinejad, M.: Dynamic characterisation of functionally graded imperfect Kirchhoff microplates. Compos. Struct. 179, 720–731 (2017). https://doi.org/10.1016/j.compstruct.2017.04.075

    Article  MATH  Google Scholar 

  37. Ghayesh, M.H.: Nonlinear dynamics of multilayered microplates. J. Comput. Nonlinear Dyn. (2017). https://doi.org/10.1115/1.4037596

    Article  Google Scholar 

  38. Farokhi, H., Ghayesh, M.H.: Modal interactions in primary and subharmonic resonant dynamics of imperfect microplates with geometric nonlinearities. Acta Mech. Sin. 32, 469–480 (2016). https://doi.org/10.1007/s10409-015-0536-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Farokhi, H., Ghayesh, M.H.: Nonlinear size-dependent dynamics of an imperfect shear deformable microplate. J. Sound Vib. 361, 226–242 (2016). https://doi.org/10.1016/j.jsv.2015.09.025

    Article  Google Scholar 

  40. Farokhi, H., Ghayesh, M.H.: On the dynamics of imperfect shear deformable microplates. Int. J. Eng. Sci. 133, 264–283 (2018). https://doi.org/10.1016/j.ijengsci.2018.04.011

    Article  MathSciNet  MATH  Google Scholar 

  41. Ammash, H.: Effect of higher order shear deformation on the nonlinear dynamic analysis of laminated composite plate under in-plane effect of higher order shear deformation on the nonlinear dynamic analysis of laminated composite plate under in-plane loads. Comput. Methods Struct. Dyn. Earthq. Eng. 1–18 (2017)

  42. Ferreira, A.J.M., Wahab, M.A.: An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Compos. Part B (2017). https://doi.org/10.1016/j.compositesb.2017.03.012

    Article  Google Scholar 

  43. Dehkordi, M.B., Khalili, S.M.R., Carrera, E.: Non-linear transient dynamic analysis of sandwich plate with composite face-sheets embedded with shape memory alloy wires and flexible core- based on the mixed LW ( layer-wise )/ ESL ( equivalent single layer ) models. Compos. Part B 87, 59–74 (2016). https://doi.org/10.1016/j.compositesb.2015.10.008

    Article  Google Scholar 

  44. Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator. Compos. Struct. (2016). https://doi.org/10.1016/j.compstruct.2016.08.020

    Article  Google Scholar 

  45. Lee, S., Hwang, J.: Finite element nonlinear transient modelling of carbon nanotubes reinforced fiber/polymer composite spherical shells with a cutout. Nanotechnol. Rev. 8, 444–451 (2019). https://doi.org/10.1515/ntrev-2019-0039

    Article  Google Scholar 

  46. Liu, Y.F., Qin, Z.Y., Chu, F.L.: Nonlinear free vibration of graphene platelets reinforced composite corrugated plates. J. Central South Univ. (2022). https://doi.org/10.1007/s11771-022-5086-6

    Article  Google Scholar 

  47. Liu, Y., Qin, Z., Chu, F.: Nonlinear forced vibrations of rotating cylindrical shells under multi-harmonic excitations in thermal environment. Nonlinear Dyn. 108, 2977–2991 (2022). https://doi.org/10.1007/s11071-022-07449-9

    Article  Google Scholar 

  48. Liu, Y., Qin, Z., Chu, F.: Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells. Commun. Nonlinear Sci. Numer. Simul. 107, 106146 (2022). https://doi.org/10.1016/j.cnsns.2021.106146

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, H., Lv, H., Gu, J., Xiong, J., Han, Q., Liu, J., Qin, Z.: Nonlinear vibration characteristics of fibre reinforced composite cylindrical shells in thermal environment. Mech. Syst. Signal Process. 156, 107665 (2021). https://doi.org/10.1016/j.ymssp.2021.107665

    Article  Google Scholar 

  50. Liu, Y., Qin, Z., Chu, F.: Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1818904

    Article  Google Scholar 

  51. Safaei, B.: Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces. Eur. Phys. J. Plus. 136, 136–646 (2021). https://doi.org/10.1140/epjp/s13360-021-01632-4

    Article  Google Scholar 

  52. Li, H., Wang, W., Wang, Q., Han, Q., Liu, J., Qin, Z., Xiong, J., Wang, X.: Static and dynamic performances of sandwich plates with magnetorheological elastomer core: theoretical and experimental studies. J. Sandw. Struct. Mater. 24, 1556–1579 (2022). https://doi.org/10.1177/10996362211053620

    Article  Google Scholar 

  53. Yang, X., Sahmani, S., Safaei, B.: Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng. Comput. 37, 1549–1564 (2021). https://doi.org/10.1007/s00366-019-00901-2

    Article  Google Scholar 

  54. Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mahapatra, S.S.: Nonlinear transient finite-element analysis of delaminated composite shallow shell panels. AIAA J. 55, 1734–1748 (2017). https://doi.org/10.2514/1.J055624

    Article  Google Scholar 

  55. Hirwani, C.K., Panda, S.K.: Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load. Eng. Comput. 36, 1201–1214 (2020). https://doi.org/10.1007/s00366-019-00757-6

    Article  Google Scholar 

  56. Dewangan, H.C., Sharma, N., Panda, S.K.: Thermomechanical loading and cut-out effect on static and dynamic responses of multilayered structure with TD properties. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2022). https://doi.org/10.1177/09544062221089153

    Article  Google Scholar 

  57. Singh, V.K., Panda, S.K.: Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct. 85, 341–349 (2014). https://doi.org/10.1016/j.tws.2014.09.003

    Article  Google Scholar 

  58. Bathe, K.J.: Finite Element Procedure in Engineering Analysis. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  59. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford Univ. Press, New York (2005)

    Google Scholar 

  60. Chen, J., Dawe, D.J., Wang, S.: Nonlinear transient analysis of rectangular composite laminated plates. Compos. Struct. 49(2), 129–139 (2000). https://doi.org/10.1007/978-1-4020-5401-3_64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Dewangan, H.C., Sharma, N. et al. Nonlinear dynamic behavior of a damaged laminated shell structure under time-dependent mechanical loading. Acta Mech 233, 4407–4425 (2022). https://doi.org/10.1007/s00707-022-03341-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03341-0

Navigation