Skip to main content
Log in

Numerical simulation of droplet evaporation in three-component multiphase flows using lattice Boltzmann method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, we present a numerical study of liquid droplet evaporation in three-component multiphase flows formulated on the basis of the lattice Boltzmann model. The main application of this research is the evaporation process in liquid propellant rocket engines, and therefore, the well-known fuels and oxidizers such as hydrogen and oxygen have been assigned to droplets material. A three-fluid (incompressible and immiscible) system is considered, and the interfaces of three fluids are captured by the Cahn–Hilliard flow model. A recent ternary-fluid model is developed to consider all the three fluids in phase-change phenomena for the first time. The present LB model is validated against some analytical and numerical solutions to evaluate the developed model accuracy in binary- and ternary-fluid systems. Effects of some related non-dimensional numbers on the droplets evaporation rate are studied, and velocity field and temperature contour are presented and analyzed. As a noticeable result, the higher evaporation rate is obtained at lower Reynolds number of droplets. Finally, as a more practical application, the evaporation of a hydrogen droplet and a few surrounded oxygen droplets in different conditions is studied. The results show that the increase in oxygen droplet numbers has a different effect on hydrogen and oxygen evaporation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Williams, A.: Combustion of Liquid Fuel Sprays, 1st edn. Butterworth-Heinemann, United Kingdom (1976)

    Google Scholar 

  2. Faeth, G.M.: Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3, 191–224 (1977). https://doi.org/10.1016/0360-1285(77)90012-0

    Article  Google Scholar 

  3. Law, C.K.: Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci. 8, 171–201 (1982). https://doi.org/10.1016/0360-1285(82)90011-9

    Article  Google Scholar 

  4. Sirignano, W.A.: Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci. 9, 291–322 (1983). https://doi.org/10.1016/0360-1285(83)90011-4

    Article  Google Scholar 

  5. Aggarwal, S.K., Peng, F.: A review of droplet dynamics and vaporization modeling for engineering calculations. J. Eng. Gas Turbines Power. 117, 453–461 (1995). https://doi.org/10.1115/1.2814117

    Article  Google Scholar 

  6. Sazhin, S.S.: Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32, 162–214 (2006). https://doi.org/10.1016/j.pecs.2005.11.001

    Article  Google Scholar 

  7. Tonini, S., Cossali, G.E.: An exact solution of the mass transport equations for spheroidal evaporating drops. Int. J. Heat Mass Transf. 60, 236–240 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.001

    Article  Google Scholar 

  8. Tonini, S., Cossali, G.E.: An evaporation model for oscillating spheroidal drops. Int. Commun. Heat Mass Transf. 51, 18–24 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2013.12.001

    Article  Google Scholar 

  9. Tonini, S., Cossali, G.E.: One-dimensional analytical approach to modelling evaporation and heating of deformed drops. Int. J. Heat Mass Transf. 97, 301–307 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.004

    Article  Google Scholar 

  10. Ni, Z., Han, K., Zhao, C., Chen, H., Pang, B.: Numerical simulation of droplet evaporation characteristics of multi-component acetone-butanol-ethanol and diesel blends under different environments. Fuel 230, 27–36 (2018). https://doi.org/10.1016/j.fuel.2018.05.038

    Article  Google Scholar 

  11. Daïf, A., Bouaziz, M., Chesneau, X., Ali Chérif, A.: Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model. Exp. Therm. Fluid Sci. 18(4), 282–290 (1998). https://doi.org/10.1016/S0894-1777(98)10035-3

    Article  Google Scholar 

  12. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32, 1605–1618 (1989). https://doi.org/10.1016/0017-9310(89)90043-4

    Article  Google Scholar 

  13. Le Clercq, P.C., Bellan, J.: Direct numerical simulation of a transitional temporal mixing layer laden with multicomponent-fuel evaporating drops using continuous thermodynamics. Phys. Fluids. 16, 1884–1907 (2004). https://doi.org/10.1063/1.1688327

    Article  MATH  Google Scholar 

  14. Birouk, M., Gökalp, I.: Current status of droplet evaporation in turbulent flows. Prog. Energy Combust. Sci. 32, 408–423 (2006). https://doi.org/10.1016/j.pecs.2006.05.001

    Article  Google Scholar 

  15. Kitano, T., Nishio, J., Kurose, R., Komori, S.: Evaporation and combustion of multicomponent fuel droplets. Fuel 136, 219–225 (2014). https://doi.org/10.1016/j.fuel.2014.07.045

    Article  Google Scholar 

  16. Millán-Merino, A., Fernández-Tarrazo, E., Sánchez-Sanz, M.: Theoretical and numerical analysis of the evaporation of mono—and multicomponent single fuel droplets. J. Fluid Mech. (2021). https://doi.org/10.1017/jfm.2020.950

    Article  MathSciNet  MATH  Google Scholar 

  17. Connington, K., Lee, T.: Lattice Boltzmann simulations of forced wetting transitions of drops on superhydrophobic surfaces. J. Comput. Phys. 250, 601–615 (2013). https://doi.org/10.1016/j.jcp.2013.05.012

    Article  Google Scholar 

  18. Williams, S., Carter, J., Oliker, L., Shalf, J., Yelick, K.: Optimization of a lattice Boltzmann computation on state-of-the-art multicore platforms. J. Parallel Distrib. Comput. 69, 762–777 (2009). https://doi.org/10.1016/j.jpdc.2009.04.002

    Article  Google Scholar 

  19. Schönherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., Krafczyk, M.: Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs. Comput. Math. with Appl. 61, 3730–3743 (2011). https://doi.org/10.1016/j.camwa.2011.04.012

    Article  Google Scholar 

  20. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998). https://doi.org/10.1146/annurev.fluid.30.1.329

    Article  MathSciNet  MATH  Google Scholar 

  21. He, X., Doolen, G.D.: Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows. J. Stat. Phys 107, 309–328 (2002). https://doi.org/10.1023/A:1014527108336

    Article  MATH  Google Scholar 

  22. Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E. 47, 1815–1819 (1993). https://doi.org/10.1103/PhysRevE.47.1815

    Article  Google Scholar 

  23. He, X., Chen, S., Zhang, R.: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 152, 642–663 (1999). https://doi.org/10.1006/jcph.1999.6257

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, T.: Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids. Comput. Math. with Appl. 58, 987–994 (2009). https://doi.org/10.1016/j.camwa.2009.02.017

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, T., Lin, C.L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 16–47 (2005). https://doi.org/10.1016/j.jcp.2004.12.001

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, T., Fischer, P.F.: Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E 74, 046709 (2006). https://doi.org/10.1103/PhysRevE.74.046709

    Article  Google Scholar 

  27. Lee, T., Liu, L.: Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. J. Comput. Phys. 229, 8045–8063 (2010). https://doi.org/10.1016/j.jcp.2010.07.007

    Article  MATH  Google Scholar 

  28. Safari, H., Rahimian, M.H., Krafczyk, M.: Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow. Phys. Rev. E 88, 013304 (2013). https://doi.org/10.1103/PhysRevE.88.013304

    Article  Google Scholar 

  29. Begmohammadi, A., Farhadzadeh, M., Rahimian, M.H.: Simulation of pool boiling and periodic bubble release at high density ratio using lattice Boltzmann method. Int. Commun. Heat Mass Transf. 61, 78–87 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2014.12.018

    Article  Google Scholar 

  30. Begmohammadi, A., Rahimian, M.H., Farhadzadeh, M., Hatani, M.A.: Numerical simulation of single- and multi-mode film boiling using lattice Boltzmann method. Comput. Math. Appl. 71, 1861–1874 (2016). https://doi.org/10.1016/j.camwa.2016.02.033

    Article  MathSciNet  MATH  Google Scholar 

  31. Hatani, M.A., Farhadzadeh, M., Rahimian, M.H.: Investigation of vapor condensation on a flat plate and horizontal cryogenic tube using lattice Boltzmann method. Int. Commun. Heat Mass Transf. 66, 218–225 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.06.011

    Article  Google Scholar 

  32. Latifiyan, N., Farhadzadeh, M., Hanafizadeh, P., Rahimian, M.H.: Numerical study of droplet evaporation in contact with hot porous surface using lattice Boltzmann method. Int. Commun. Heat Mass Transf. 71, 56–74 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2015.12.017

    Article  Google Scholar 

  33. Ashna, M., Rahimian, M.H., Fakhari, A.: Extended lattice Boltzmann scheme for droplet combustion. Phys. Rev. E. 95, 053301 (2017). https://doi.org/10.1103/PhysRevE.95.053301

    Article  MathSciNet  Google Scholar 

  34. Ashna, M., Rahimian, M.H.: LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime. Int. J. Heat Mass Transf. 109, 520–536 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.108

    Article  Google Scholar 

  35. Haghani-Hassan-Abadi, R., Rahimian, M.H.: Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid. Int. J. Heat Mass Transf. 127, 704–716 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.071

    Article  Google Scholar 

  36. Haghani-Hassan-Abadi, R., Rahimian, M.H.: Axisymmetric lattice Boltzmann model for simulation of ternary fluid flows. Acta Mech. 231, 2323–2334 (2020). https://doi.org/10.1007/s00707-020-02663-1

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi, Y., Wang, X.P.: Modeling and simulation of dynamics of three-component flows on solid surface. Jpn. J. Ind. Appl. Math. 31, 611–631 (2014). https://doi.org/10.1007/s13160-014-0151-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Boyer, F., Lapuerta, C.: Study of a three component Cahn-Hilliard flow model. Math. Model. Numer. Anal. 40, 653–687 (2006). https://doi.org/10.1051/m2an:2006028

    Article  MathSciNet  MATH  Google Scholar 

  39. Bao, J., Schaefer, L.: Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios. Appl. Math. Model. 37, 1860–1871 (2013). https://doi.org/10.1016/j.apm.2012.04.048

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuan, P., Schaefer, L.: Equations of state in a lattice Boltzmann model. Phys. Fluids. 18, 042101 (2006). https://doi.org/10.1063/1.2187070

    Article  MathSciNet  MATH  Google Scholar 

  41. Semprebon, C., Krüger, T., Kusumaatmaja, H.: Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles. Phys. Rev. E. (2016). https://doi.org/10.1103/PhysRevE.93.033305

    Article  MathSciNet  Google Scholar 

  42. Shi, Y., Tang, G.H., Wang, Y.: Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver. J. Comput. Phys. 314, 228–243 (2016). https://doi.org/10.1016/j.jcp.2016.03.011

    Article  MathSciNet  MATH  Google Scholar 

  43. Liang, H., Shi, B.C., Chai, Z.H.: Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E. 93, 013308 (2016). https://doi.org/10.1103/PhysRevE.93.013308

    Article  MathSciNet  Google Scholar 

  44. Haghani-Hassan-Abadi, R., Fakhari, A., Rahimian, M.H.: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods. Phys. Rev. E. 97, 033312 (2018). https://doi.org/10.1103/PhysRevE.97.033312

    Article  Google Scholar 

  45. Haghani-Hassan-Abadi, R., Rahimian, M.H., Fakhari, A.: Conservative phase-field lattice-Boltzmann model for ternary fluids. J. Comput. Phys. 374, 668–691 (2018). https://doi.org/10.1016/j.jcp.2018.07.045

    Article  MathSciNet  MATH  Google Scholar 

  46. Jacqmin, D.: An energy approach to the continuum surface tension method. In: 34th Aerosp. Sci. Meet. Exhib, American Institute of Aeronautics and Astronautics Inc, AIAA, 1996. https://doi.org/10.2514/6.1996-858

  47. Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media. 82, 463–483 (2010). https://doi.org/10.1007/s11242-009-9408-z

    Article  MathSciNet  Google Scholar 

  48. He, X., Shan, X., Doolen, G.D.: Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E 57, R13–R16 (1998). https://doi.org/10.1103/PhysRevE.57.R13

    Article  Google Scholar 

  49. He, X., Luo, L.S.: A priori derivation of the lattice Boltzmann equation. Phys. Rev. E. 55, R6333 (1997). https://doi.org/10.1103/PhysRevE.55.R6333

    Article  Google Scholar 

  50. Zu, Y.Q., He, S.: Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Phys. Rev. E. 87, 043301 (2013). https://doi.org/10.1103/PhysRevE.87.043301

    Article  Google Scholar 

  51. Kim, J.: Phase field computations for ternary fluid flows. Comput. Methods Appl. Mech. Eng. 196, 4779–4788 (2007). https://doi.org/10.1016/j.cma.2007.06.016

    Article  MathSciNet  MATH  Google Scholar 

  52. Mohammadi-Shad, M., Lee, T.: Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver. Phys. Rev. E. 96, 013306 (2017). https://doi.org/10.1103/PhysRevE.96.013306

    Article  MathSciNet  Google Scholar 

  53. Guo, Z., Shi, B., Zheng, C.: A coupled lattice BGK model for the Boussinesq equations. Int. J. Numer. Methods Fluids. 39, 325–342 (2002). https://doi.org/10.1002/fld.337

    Article  MathSciNet  MATH  Google Scholar 

  54. Inamuro, T., Yoshino, M., Inoue, H., Mizuno, R., Ogino, F.: A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J. Comput. Phys. 179, 201–215 (2002). https://doi.org/10.1006/jcph.2002.7051

    Article  MATH  Google Scholar 

  55. Mohamad, A.A.: Lattice Boltzmann Method, Springer, London (2011). https://doi.org/10.1007/978-0-85729-455-5

    Article  Google Scholar 

  56. Chopard, B., Falcone, J.L., Latt, J.: The lattice Boltzmann advection-diffusion model revisited. Eur. Phys. J. Spec. Top 171(1), 245–249 (2009). https://doi.org/10.1140/epjst/e2009-01035-5

    Article  Google Scholar 

  57. Huang, H.B., Lu, X.Y., Sukop, M.C.: Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations. J. Phys. A Math. Theor. 44, 055001 (2011). https://doi.org/10.1088/1751-8113/44/5/055001

    Article  MathSciNet  MATH  Google Scholar 

  58. Jiang, T.L., Liu, C.C., Chen, W.S.: Convective fuel droplet burning accompanied by an oxidizer droplet. Combust. Sci. Technol. 97, 271–301 (1994). https://doi.org/10.1080/00102209408935381

    Article  Google Scholar 

  59. Karami, N., Rahimian, M.H.: Numerical simulation of droplet evaporation on a hot surface near Leidenfrost regime using multiphase lattice Boltzmann method. Appl. Math. Comput. 312, 91–108 (2017). https://doi.org/10.1016/j.amc.2017.05.038

    Article  MathSciNet  MATH  Google Scholar 

  60. Jiang, T.L., Chiu, H.: Combustion of a fuel droplet surrounded by oxidizer droplets, ASME. J. Heat Transfer. 113, 959–965 (1991). https://doi.org/10.1115/1.2911228

    Article  Google Scholar 

  61. Sadeghi, R., Shadloo, M.S., Abdollahzadeh Jamalabadi, M.Y., Karimipou, A.: A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling. Int. Commun. Heat Mass Transf. 79, 58–66 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.10.009

    Article  Google Scholar 

  62. Sadeghi, R., Shadloo, M.S.: Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numer. Heat. Transf. Part A: Appl. 71, 560–574 (2017). https://doi.org/10.1080/10407782.2016.1277936

    Article  Google Scholar 

  63. Sadeghi, R., Shadloo, M.S., Hopp-Hirschler, M., Hadjadj, A., Nieken, U.: Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput. Math. with Appl. 75, 2445–2465 (2018). https://doi.org/10.1016/j.camwa.2017.12.028

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Rahimian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifiyan, N., Rahimian, M.H., Haghani-Hassan-Abadi, R. et al. Numerical simulation of droplet evaporation in three-component multiphase flows using lattice Boltzmann method. Acta Mech 233, 4817–4849 (2022). https://doi.org/10.1007/s00707-022-03307-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03307-2

Navigation