Skip to main content

Advertisement

Log in

Analysis of Love-type acoustic wave in a functionally graded piezomagnetic plate sandwiched between elastic layers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The objective of the present research article is to explore the behavior of phase velocity of surface acoustic Love-type wave in a layer of functionally graded piezomagnetic material (FGPM) sandwiched between a thin layer of heterogeneous fiber-reinforced material and heterogeneous elastic substrate. The fiber-reinforced layer is considered exponentially graded and under initial stress (compressive/ tensile). The interfaces between the FGPM layer and elastic layer/substrate are mechanically imperfect. The material properties of the piezomagnetic layer and elastic substrate are assumed to be varying in quadratic way along with the depth of the structure. Mechanical displacement components for each layer and magnetic potential for the piezomagnetic layer are obtained by solving linear mechanical/coupled magneto-mechanical field equations. Using suitable boundary conditions, transcendental dispersion relations are obtained for magnetically open and short cases. A numerical example is provided for the layers and substrate. The effects of heterogeneity of two elastic layers, gradient factor of piezomagnetic layer, initial stress, reinforcement direction, and mechanical imperfections on the fundamental mode phase velocity of Love-type wave are illustrated graphically. The present investigation may find practical application in the design of piezomagnetic sensors and transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schmid, S., Villanueva, L.G., Roukes, M.L.: Fundamentals of Nanomechanical Resonators, vol. 49. Springer, Berlin (2016)

    Book  Google Scholar 

  2. Mondal, S., Sahu, S.A., Goyal, S.: Mathematical analysis of surface wave transference through imperfect interface in fgpm bedded structure. Mech Based Des Struct Mach. 1–18 (2020)

  3. Niino, M.: Functionally gradient materials as thermal barrier for space plane. J. Jpn. Compos. Mater. 13, 257–264 (1987)

    Article  Google Scholar 

  4. Kieback, B., Neubrand, A., Riedel, H.: Processing techniques for functionally graded materials. Mater. Sci. Eng. A 362(1–2), 81–106 (2003)

    Article  Google Scholar 

  5. Ichinose, N., Miyamoto, N., Takahashi, S.: Ultrasonic transducers with functionally graded piezoelectric ceramics. J. Eur. Ceram. Soc. 24(6), 1681–1685 (2004)

    Article  Google Scholar 

  6. Jianke, D., Jin, X., Wang, J., Xian, K.: Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46(1), 13–22 (2007)

    Article  Google Scholar 

  7. Kong, Y., Liu, J., Nie, G.: Propagation characteristics of sh waves in a functionally graded piezomagnetic layer on pmn-0.29 pt single crystal substrate. Mech. Res. Commun. 73, 107–112 (2016)

    Article  Google Scholar 

  8. Cao, X., Shi, J., Jin, F.: Lamb wave propagation in the functionally graded piezoelectric-piezomagnetic material plate. Acta Mech. 223(5), 1081–1091 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arefi, M.: Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Appl. Math. Mech. 37(3), 289–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sahu, S.A., Mondal, S., Dewangan, N.: Polarized shear waves in functionally graded piezoelectric material layer sandwiched between corrugated piezomagnetic layer and elastic substrate. J. Sandwich Struct. Mater. 21(8), 2921–2948 (2019)

    Article  Google Scholar 

  11. Alam, P., Kundu, S., Gupta, S.: Love-type wave propagation in a hydrostatic stressed magneto-elastic transversely isotropic strip over an inhomogeneous substrate caused by a disturbance point source. J. Intell. Mater. Syst. Struct. 29(11), 2508–2521 (2018)

    Article  Google Scholar 

  12. Rajak, B.P., Kundu, S., Gupta, S.: Study of the sh-wave propagation in an fgpm layer imperfectly bonded over a microstructural coupled stress half-space. Acta Mech. 233(2), 597–616 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vallittu, P.K.: An overview of development and status of fiber-reinforced composites as dental and medical biomaterials. Acta Biomater. Odontol. Scand. 4(1), 44–55 (2018)

    Article  Google Scholar 

  14. Spencer, A.J.M., et al.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites, vol. 282. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  15. Adkins, J.E.: Finite plane deformation of thin elastic sheets reinforced with inextensible cords. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 249(961), 125–150 (1956)

    MathSciNet  MATH  Google Scholar 

  16. Belfield, A.J., Rogers, T.G., Spencer, A.J.M.: Stress in elastic plates reinforced by fibres lying in concentric circles. J. Mech. Phys. Solids 31(1), 25–54 (1983)

    Article  MATH  Google Scholar 

  17. Chattopadhyay, A., Choudhury, S.: Propagation, reflection and transmission of magnetoelastic shear waves in a self-reinforced medium. Int. J. Eng. Sci. 28(6), 485–495 (1990)

    Article  MATH  Google Scholar 

  18. Sahu, S.A., Saroj, P.K., Paswan, B.: Shear waves in a heterogeneous fiber-reinforced layer over a half-space under gravity. Int. J. Geomech. 15(2), 04014048 (2015)

    Article  Google Scholar 

  19. Kundu, S., Gupta, S., Manna, S.: Propagation of Love wave in fiber-reinforced medium lying over an initially stressed orthotropic half-space. Int. J. Numer. Anal. Meth. Geomech. 38(11), 1172–1182 (2014)

    Article  Google Scholar 

  20. Alam, P., Kundu, S., Badruddin, I.A., Khan, T.M.Y.: Dispersion and attenuation characteristics of Love-type waves in a fiber-reinforced composite over a viscoelastic substrate. Phys. Wave Phenom. 27(4), 281–289 (2019)

    Article  Google Scholar 

  21. Singh, A.K., Parween, Z., Chaki, M.S., Mahto, S.: Influence of loose bonding, initial stress and reinforcement on Love-type wave propagating in a functionally graded piezoelectric composite structure. Smart Struct. Syst. 22(3), 341–358 (2018)

    Google Scholar 

  22. Kumhar, R., Kundu, S., Maity, M., Gupta, S.: Analysis of interfacial imperfections and electro-mechanical properties on elastic waves in porous piezo-composite bars. Int. J. Mech. Sci. 187, 105926 (2020)

    Article  Google Scholar 

  23. Li, P., Jin, F.: Bleustein–Gulyaev waves in a transversely isotropic piezoelectric layered structure with an imperfectly bonded interface. Smart Mater. Struct. 21(4), 045009 (2012)

    Article  MathSciNet  Google Scholar 

  24. Chen, Z.G., Hu, Y.T., Yang, J.S.: Shear horizontal piezoelectric waves in a piezoceramic plate imperfectly bonded to two piezoceramic half-spaces. J. Mech. 24(3), 229–239 (2008)

    Article  Google Scholar 

  25. Fan, H., Yang, J., Xu, L.: Antiplane piezoelectric surface waves over a ceramic half-space with an imperfectly bonded layer. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 53(9), 1695–1698 (2006)

    Article  Google Scholar 

  26. Singh, A.K., Lakshman, A., Mistri, K.C., Pal, M.K.: Torsional surface wave propagation in an imperfectly bonded corrugated initially-stressed poroelastic sandwiched layer. J. Porous Media 21(6), (2018)

  27. Liu, J., Wang, Y., Wang, B.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1875–1879 (2010)

    Article  Google Scholar 

  28. Biot, M.A.: Mechanics of Incremental Deformations. (1965)

  29. Liu, L., Zhao, J., Pan, Y., Bonello, B., Zhong, Z.: Theoretical study of sh-wave propagation in periodically-layered piezomagnetic structure. Int. J. Mech. Sci. 85, 45–54 (2014)

    Article  Google Scholar 

  30. Huang, Y., Li, X.F.: Shear waves guided by the imperfect interface of two magnetoelectric materials. Ultrasonics 50(8), 750–757 (2010)

    Article  Google Scholar 

  31. Chattopadhyay, A., Choudhury, S.: Magnetoelastic shear waves in an infinite self-reinforced plate. Int. J. Numer. Anal. Meth. Geomech. 19(4), 289–304 (1995)

    Article  MATH  Google Scholar 

  32. Hool, G.A., Kinne, W.S.: Reinforced Concrete and Masonry Structures. McGraw-Hill, New York (1924)

    Google Scholar 

  33. Nie, G., An, Z., Liu, J.: Sh-guided waves in layered piezoelectric/piezomagnetic plates. Prog. Nat. Sci. 19(7), 811–816 (2009)

    Article  Google Scholar 

  34. Liu, H., Wang, Z.K., Wang, T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38(1), 37–51 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev A. Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 For magnetically open case:

\(H_{11} = [\mu '_T\alpha _1 + a^2 _1(\mu '_L - \mu '_T)\alpha _1 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _1(h_1 + h_2)},\quad \) \(H_{12} = [\mu '_T\alpha _2 + a^2 _1(\mu '_L - \mu '_T)\alpha _2 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _2(h_1 + h_2)},\quad \) \(H_{23} = \frac{h^0_{15}}{\mu ^0_{11}}\cos {k \lambda _1 h_1},\quad \) \(H_{24} = -\frac{h^0_{15}}{\mu ^0_{11}}\sin {k \lambda _1 h_1},\quad \) \(H_{25} = e^{-kh_1},\quad \) \(H_{26} = e^{kh_1},\quad \) \(H_{31} = e^{-\gamma ' h_1}[\mu '_T\alpha _1 + a^2 _1(\mu '_L - \mu '_T)\alpha _1 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _1 h_1},\quad \) \(H_{32} = e^{-\gamma ' h_1}[\mu '_T\alpha _2 + a^2 _1(\mu '_L - \mu '_T)\alpha _2 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _2 h_1},\quad \) \(H_{33} = -\bar{c_{44}}[-b\cos {k\lambda _1 h_1} + (1-bh_1)k\lambda _1\sin {k\lambda _1 h_1}],\quad \) \(H_{34} = -\bar{c_{44}}[b\sin {k\lambda _1 h_1} + (1-bh_1)k\lambda _1\cos {k\lambda _1 h_1}],\quad \) \(H_{35} = h^0_{15}[-be^{-kh_1} + (1-bh_1)ke^{-kh_1}],\quad \) \(H_{36} = h^0_{15}[-be^{kh_1} - (1-bh_1)ke^{kh_1}],\quad \) \(H_{41} = e^{-\gamma ' h_1}[\mu '_T\alpha _1 + a^2 _1(\mu '_L - \mu '_T)\alpha _1 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _1 h_1}+k_m e^{-\alpha _1 h_1},\quad \) \(H_{42} = e^{-\gamma ' h_1}[\mu '_T\alpha _2 + a^2 _1(\mu '_L - \mu '_T)\alpha _2 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _2 h_1}+k_me^{-\alpha _2 h_1},\quad \) \(H_{43} = -k_m\frac{1}{1 - bh_1}\cos {k\lambda _1 h_1},\quad \) \(H_{44} = k_m\frac{1}{1 - bh_1}\sin {k\lambda _1 h_1},\quad \) \(H_{53} = -k_n,\quad \) \(H_{57} = c^s_{44}[-a-k\xi ]+k_n,\quad \) \(H_{63} = -\bar{c_{44}}b,\quad \) \(H_{64} = \bar{c_{44}}k\lambda _1 ,\quad \) \(H_{65} = h^0 _{15}[k-b],\quad \) \(H_{66} = - h^0 _{15}[k+b],\quad \) \(H_{67} = c^s_{44}[-a-k\xi ],\quad \) \(H_{75} = 1,\quad \) \(H_{76} = 1,\quad \) \(H_{73} = \frac{h^0 _{15}}{\mu ^0_{11}}.\)   

1.2 For magnetically short case:

\(G_{11} = [\mu '_T\alpha _1 + a^2 _1(\mu '_L - \mu '_T)\alpha _1 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _1(h_1 + h_2)},\quad \) \(G_{12} = [\mu '_T\alpha _2 + a^2 _1(\mu '_L - \mu '_T)\alpha _2 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _2(h_1 + h_2)}\),   \(G_{25} = [b-k(1-bh_1)]e^{-kh_1}\),   \(G_{26} = [b+k(1-bh_1)]e^{kh_1}\),   \(G_{31} = e^{-\gamma ' h_1}[\mu '_T\alpha _1 + a^2 _1(\mu '_L - \mu '_T)\alpha _1 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _1 h_1}\),   \(G_{32} = e^{-\gamma ' h_1}[\mu '_T\alpha _2 + a^2 _1(\mu '_L - \mu '_T)\alpha _2 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _2 h_1}\),   \(G_{33} = -\bar{c_{44}}[-b\cos {k\lambda _1 h_1} + (1-bh_1)k\lambda _1\sin {k\lambda _1 h_1}]\),   \(G_{34} = -\bar{c_{44}}[b\sin {k\lambda _1 h_1} + (1-bh_1)k\lambda _1\cos {k\lambda _1 h_1}]\),   \(G_{35} = h^0_{15}[-be^{-kh_1} + (1-bh_1)ke^{-kh_1}]\),   \(G_{36} = h^0_{15}[-be^{kh_1} - (1-bh_1)ke^{kh_1}]\),   \(H_{41} = e^{-\gamma ' h_1}[\mu '_T\alpha _1 + a^2 _1(\mu '_L - \mu '_T)\alpha _1 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _1 h_1}+k_m e^{-\alpha _1 h_1},\quad \) \(H_{42} = e^{-\gamma ' h_1}[\mu '_T\alpha _2 + a^2 _1(\mu '_L - \mu '_T)\alpha _2 + a_1a_2ik((\mu '_L - \mu '_T)]e^{-\alpha _2 h_1}+k_me^{-\alpha _2 h_1},\quad \) \(H_{43} = -k_m\frac{1}{1 - bh_1}\cos {k\lambda _1 h_1},\quad \) \(H_{44} = k_m\frac{1}{1 - bh_1}\sin {k\lambda _1 h_1},\quad \) \(H_{53} = -k_n,\quad \) \(H_{57} = c^s_{44}[-a-k\xi ]+k_n,\quad \) \(G_{63} = -\bar{c_{44}}b\),   \(G_{64} = \bar{c_{44}}k\lambda _1 \),   \(G_{65} = h^0 _{15}[k-b]\),   \(G_{66} = - h^0 _{15}[k+b]\),   \(G_{67} = c^s_{44}[-a-k\xi ]\),   \(G_{75} = -b+k\),   \(G_{76} = -b-k\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, M., Sahu, S.A. Analysis of Love-type acoustic wave in a functionally graded piezomagnetic plate sandwiched between elastic layers. Acta Mech 233, 4295–4310 (2022). https://doi.org/10.1007/s00707-022-03299-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03299-z

Mathematics Subject Classification

Navigation