Skip to main content
Log in

Effect of wall slip on laminar flow past a circular cylinder

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A numerical study of two-dimensional flow past a confined circular cylinder with slip wall is performed. A dimensionless number, Knudsen number (Kn), is used to describe the slip length of the cylinder wall. The Reynolds number (Re) and Knudsen number (Kn) ranges considered are Re = [1, 180] and Kn = [0, ), respectively. Time-averaged flow separation angle (\(\overline{{\theta_{{\text{s}}} }}\)), dimensionless recirculation length (\(\overline{{L_{{\text{s}}} }}\)), and tangential velocity (\(\overline{{u_{\tau } }}\)) distributed on the cylinder’s wall, drag coefficient (\( \overline{{C_{{\text{d}}} }}\)) and drag reduction (DR) are investigated. The time-averaged tangential velocity distributed on the cylinder’s wall fits well with the formula \(\overline{{u_{\tau } }} = U_{\infty } \cdot \left[ {\frac{\alpha }{{1 + \beta e^{{ - \gamma \left( {\pi - \theta } \right)}} }} + \delta } \right] \cdot \sin \theta\), where the coefficients (α, β, γ, δ) are related to Re and Kn, and U∞ is the incoming velocity. Several scaling laws are found, log(\(\overline{{u_{\tau \max } }}\)) ~ log(Re) and \(\overline{{u_{\tau \max } }}\) ~ Kn for low Kn (\(\overline{{u_{\tau \max } }}\) is the maximum tangential velocity on the cylinder’s wall), log(DR) ~ log(Re) (Re ≤ 45 and Kn ≤ 0.1) and log(DR) ~ log(Kn) (Kn ≤ 0.05). At low Re, DRv (the friction drag reduction) is the main source of DR. However, DRp (the differential pressure drag reduction) contributes most to DR at high Re (Re > \(\sim60\)) and Kn over a critical number. DRv is found almost independent of Re.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  2. Zdravkovich, M.M.: Flow around circular cylinders. Fundamentals 1, 566–571 (1997)

    MATH  Google Scholar 

  3. Zdravkovich, M.M.: Flow around circular cylinders. Applications 2, 679–708 (2003)

    Google Scholar 

  4. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices. Ann. Rev. Fluid Mech. 36(1), 381–411 (2004)

    Article  Google Scholar 

  5. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  6. Vinogradova, O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56(1–4), 31–60 (1999)

    Article  Google Scholar 

  7. Granick, S., Zhu, Y., Lee, H.: Slippery questions about complex fluids flowing past solids. Nat. Mater. 2(4), 221–227 (2003)

    Article  Google Scholar 

  8. Tropea, C., Yarin, A.L., Foss, J.F.: Springer Handbook of Experimental Fluid Mechanics 1 1219–1235 (2007)

  9. Navier, C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mém. Acad. R. Sci. Inst. France 6(1823), 389–440 (1823)

    Google Scholar 

  10. Joseph, P., Tabeling, P.: Direct measurement of the apparent slip length. Phys. Rev. E 71(3), 035303 (2005)

    Article  Google Scholar 

  11. Quéré, D.: Non-sticking drops. Rep. Prog. Phys. 68(11), 2495 (2005)

    Article  Google Scholar 

  12. Lee, C., Kim, C.J.C.: Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25(21), 12812–12818 (2009)

    Article  Google Scholar 

  13. Xue, Y., Chu, S., Lv, P., Duan, H.: Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces. Langmuir 28(25), 9440–9450 (2012)

    Article  Google Scholar 

  14. Choi, C.H., Ulmanella, U., Kim, J., Ho, C.M., Kim, C.J.: Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 18(8), 087105 (2006)

    Article  Google Scholar 

  15. Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., Bocquet, L.: Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys. Fluids 19(12), 123601 (2007)

    Article  Google Scholar 

  16. Kim, N., Kim, H., Park, H.: An experimental study on the effects of rough hydrophobic surfaces on the flow around a circular cylinder. Phys. Fluids 27(8), 085113 (2015)

    Article  Google Scholar 

  17. You, D., Moin, P.: Effects of hydrophobic surfaces on the drag and lift of a circular cylinder. Phys. Fluids 19(8), 081701 (2007)

    Article  Google Scholar 

  18. Brennan, J.C., Fairhurst, D.J., Morris, R.H., McHale, G., Newton, M.I.: Investigation of the drag reducing effect of hydrophobized sand on cylinders. J. Phys. D Appl. Phys. 47(20), 205302 (2014)

    Article  Google Scholar 

  19. Legendre, D., Lauga, E., Magnaudet, J.: Influence of slip on the dynamics of two-dimensional wakes. J. Fluid Mech. 633, 437–447 (2009)

    Article  Google Scholar 

  20. Xiong, Y.L., Yang, D.: Influence of slip on the three-dimensional instability of flow past an elongated superhydrophobic bluff body. J. Fluid Mech. 814, 69–94 (2017)

    Article  MathSciNet  Google Scholar 

  21. Muralidhar, P., Ferrer, N., Daniello, R., Rothstein, J.P.: Influence of slip on the flow past superhydrophobic cylinders. J. Fluid Mech. 680, 459–476 (2011)

    Article  Google Scholar 

  22. Daniello, R., Muralidhar, P., Carron, N., Greene, M., Rothstein, J.P.: Influence of slip on vortex-induced motion of a superhydrophobic cylinder. J. Fluids Struct. 42, 358–368 (2013)

    Article  Google Scholar 

  23. Seo, I.W., Song, C.G.: Numerical simulation of laminar flow past a circular cylinder with slip conditions. Int. J. Numer. Meth. Fluids 68(12), 1538–1560 (2012)

    Article  MathSciNet  Google Scholar 

  24. Li, D.D., Li, S.C., Xue, Y.H., Yang, Y.T., Su, W.D., Xia, Z.H., Shi, Y.P., Duan, H.L.: The effect of slip distribution on flow past a circular cylinder. J. Fluids Struct. 51, 211–224 (2014)

    Article  Google Scholar 

  25. D’Alessio, S.J.D.: Flow past a slippery cylinder: part 1-circular cylinder. Acta Mech. 229(8), 3375–3392 (2018)

    Article  MathSciNet  Google Scholar 

  26. D’Alessio, S.J.D.: Flow past a slippery cylinder: part 2-elliptic cylinder. Acta Mech. 229(8), 3415–3436 (2018)

    Article  MathSciNet  Google Scholar 

  27. Ren, Q., Xiong, Y.L., Yang, D., Duan, J.: Flow past a rotating circular cylinder with superhydrophobic surfaces. Acta Mech. 229(9), 3613–3627 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kouser, T., Xiong, Y., Yang, D., Peng, S.: Numerical study on drag reduction and wake modification for the flows over a hydrofoil in presence of surface heterogeneity. Adv. Mech. Eng. 14(1), 16878140221075306 (2022)

    Article  Google Scholar 

  29. Kumar, A., Rehman, N.M., Giri, P., Shukla, R.K.: An asymptotic theory for the high-Reynolds-number flow past a shear-free circular cylinder. J. Fluid Mech. 920, A44 (2021)

    Article  MathSciNet  Google Scholar 

  30. Maghsoudi, E., Martin, M.J., Devireddy, R.: Momentum and heat transfer in laminar slip flow over a cylinder. J. Thermophys. Heat Transf. 27(4), 607–614 (2013)

    Article  Google Scholar 

  31. Barkley, D., Henderson, R.D.: Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215–241 (1996)

    Article  Google Scholar 

  32. Peng, S., Xiong, Y.L., Xu, X.Y., Yu, P.: Numerical study of unsteady viscoelastic flow past two side-by-side circular cylinders. Phys. Fluids 32(8), 083106 (2020)

    Article  Google Scholar 

  33. Xiong, Y., Peng, S., Zhang, M., Yang, D.: Numerical study on the vortex-induced vibration of a circular cylinder in viscoelastic fluids. J. Nonnewton. Fluid Mech. 272, 104170 (2019)

    Article  MathSciNet  Google Scholar 

  34. Peng, S., Huang, T., Kouser, T., Xiong, Y. L., & Yu, P. (2022). Wake asymmetry weakening in viscoelastic fluids. arXiv preprint arXiv:2203.14239

  35. Sen, S., Mittal, S., Biswas, G.: Steady separated flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 620, 89–119 (2009)

    Article  Google Scholar 

  36. Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98(4), 819–855 (1980)

    Article  Google Scholar 

  37. Park, J., Kwon, K., Choi, H.: Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int. J. 12(6), 1200–1205 (1998)

    Article  Google Scholar 

  38. Xiong, Y., Peng, S., Yang, D., Duan, J., Wang, L.: Influence of polymer additive on flow past a hydrofoil: a numerical study. Phys. Fluids 30(1), 013104 (2018)

    Article  Google Scholar 

  39. D’Alessio, S.J.D., Dennis, S.C.R.: A vorticity model for viscous flow past a cylinder. Comput. Fluids 23(2), 279–293 (1994)

    Article  Google Scholar 

  40. Rajani, B.N., Kandasamy, A., Majumdar, S.: Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model. 33(3), 1228–1247 (2009)

    Article  MathSciNet  Google Scholar 

  41. Wu, M.H., Wen, C.Y., Yen, R.H., Weng, M.C., Wang, A.B.: Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number. J. Fluid Mech. 515, 233–260 (2004)

    Article  Google Scholar 

  42. Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6(4), 547–567 (1959)

    Article  Google Scholar 

Download references

Acknowledgements

The author Sai Peng would like to thank the financial support from the National Natural Science Foundation of China (NSFC, Grant No. 12002148), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515011057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yc., Peng, S. & Kouser, T. Effect of wall slip on laminar flow past a circular cylinder. Acta Mech 233, 3957–3975 (2022). https://doi.org/10.1007/s00707-022-03297-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03297-1

Navigation