Skip to main content
Log in

A numerical study of heat transfer in saturated nucleate pool boiling process: a new analysis based on the inherent physics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a direct numerical simulation of saturated nucleate pool boiling is performed using a hybrid front tracking method. A one-field formulation is applied to resolve the mass, momentum and energy equations including phase change. The well-known 1D Estefan problem and 2D film boiling process are studied to validate the implementation of the code. The obtained results are found to be in excellent agreement with the available analytical, numerical and experimental solutions in the literature. Afterward, the developed solver is employed to analyze the nucleate pool boiling problem. The continuous and complete cycles of the nucleate boiling phenomenon involving the corresponding sub-processes are well captured. Unlike the available results in the literature being mostly limited to some common fluids, here the respective non-dimensional parameters are employed to generalize the numerical study findings regardless of the fluid material. The time- and space-averaged Nusselt numbers are considered as a proper criterion to evaluate the heat transfer performance of boiling surface. The main non-dimensional parameters including Grashof, Prandtl and Jacob numbers are varied in the range of 17–300 and 2.8–8.6 as well as 0.017–0.5, respectively. It is observed that any change can cause a frequency variation of bubble departures and the temporal peaks of the space-averaged Nusselt number. Depending on the flow parameters, it is found that the time-averaged Nusselt number experiences an increase or decrease with respect to other cases. Also, the results obtained for nucleate pool boiling simulations show acceptable agreement with the ones predicted by empirical correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

c :

Specific heat capacity

D d :

Bubble departure diameter

D Fritz :

Fritz’s bubble departure diameter

g :

Acceleration due to gravity

Gr:

Grashof number

h fg :

Evaporation latent heat

I :

Indicator function

Ja:

Jacob number

k :

Thermal conductivity

L :

Distance between two nucleation sites

l 0 :

Capillary length

m :

Evaporated liquid

N pn :

Number of nucleation sites

Nu:

Nusselt number

 < Nu > :

Space averaged Nu

\({<}\overline{{{\text{Nu}}}} {>}\) :

Time and space averaged Nu

P :

Pressure

Pr:

Prandtl number

q :

Heat flux

Re:

Reynolds number

T :

Temperature

t :

Time

u :

Velocity vector

U 0 :

Capillary velocity

x :

Position vector

α :

Thermal diffusivity

δ :

Delta function

Δ:

Normal probe length

Δτ :

Time step

ϕ :

Fluid property

κ :

Curvature

μ :

Kinetic viscosity of fluid

θ :

Contact angle

ρ :

Fluid density

σ :

Surface tension

τ :

Shear stress

crit:

Critical

Cycle:

Averaged in a cycle

f:

Front (interface)

l:

Liquid

n:

Unit normal vector

sat:

Saturation

v:

Vapor

n + 1:

Next time step

n :

Current time step

*:

Dimensionless

.:

Time rate

References

  1. Liang, G., Yu, H., Chen, L., Shen, S.: Interfacial phenomena in impact of droplet array on solid wall. Acta Mech. 231(1), 305–319 (2020)

    Article  Google Scholar 

  2. Mansour, T.M., Khalaf-Allah, R.A.: Theoretical and experimental verification for determining pool boiling heat transfer coefficient using fuzzy logic. Heat Mass Transf. 56(11), 3059–3070 (2020)

    Article  Google Scholar 

  3. Nukiyama, S.: The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transf. 9(12), 1419–1433 (1966)

    Article  Google Scholar 

  4. Kim, J.: Review of nucleate pool boiling bubble heat transfer mechanisms. Int. J. Multiph. Flow 35(12), 1067–1076 (2009)

    Article  Google Scholar 

  5. Yagov, V.V.: Nucleate boiling heat transfer: possibilities and limitations of theoretical analysis. Heat Mass Transf. 45(7), 881–892 (2009)

    Article  Google Scholar 

  6. Jo, H., Ahn, H.S., Kang, S., Kim, M.H.: A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int. J. Heat Mass Transf. 54(25), 5643–5652 (2011)

    Article  Google Scholar 

  7. Tien, C.: A hydrodynamic model for nucleate pool boiling. Int. J. Heat Mass Transf. 5(6), 533–540 (1962)

    Article  Google Scholar 

  8. Rohsenow, W.: A new correlation of pool-boiling data including the effect of heating surface characteristics. Stainl. Steel 1(111), 1 (1968)

    Google Scholar 

  9. Kocamustafaogullari, G., Ishii, M.: Interfacial area and nucleation site density in boiling systems. Int. J. Heat Mass Transf. 26(9), 1377–1387 (1983)

    Article  Google Scholar 

  10. Sakashita, H., Kumada, T.: Method for predicting boiling curves of saturated nucleate boiling. Int. J. Heat Mass Transf. 44(3), 673–682 (2001)

    Article  MATH  Google Scholar 

  11. Danish, M., Al Mesfer, M.K.: Analytical solution of nucleate pool boiling heat transfer model based on macrolayer. Heat Mass Transf. 54(2), 313–324 (2018)

    Article  Google Scholar 

  12. Zajaczkowski, B., Halon, T., Krolicki, Z.: Experimental verification of heat transfer coefficient for nucleate boiling at sub-atmospheric pressure and small heat fluxes. Heat Mass Transf. 52(2), 205–215 (2016)

    Article  Google Scholar 

  13. Son, G., Dhir, V.: Numerical simulation of saturated film boiling on a horizontal surface. Trans. Am. Soc. Mech. Eng. J. Heat Transf. 119, 525–533 (1997)

    Article  Google Scholar 

  14. Son, G., Dhir, V.: Numerical simulation of film boiling near critical pressures with a level set method. Trans. Am. Soc. Mech. Eng. J. Heat Transf. 120, 183–192 (1998)

    Article  Google Scholar 

  15. Tryggvason, G., et al.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Q., Kang, Q., Francois, M.M., He, Y., Luo, K.: Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 85, 787–796 (2015)

    Article  Google Scholar 

  17. Shin, S., Abdel-Khalik, S., Juric, D.: Direct three-dimensional numerical simulation of nucleate boiling using the level contour reconstruction method. Int. J. Multiph. Flow 31(10), 1231–1242 (2005)

    Article  MATH  Google Scholar 

  18. Welch, S.W.: Local simulation of two-phase flows including interface tracking with mass transfer. J. Comput. Phys. 121(1), 142–154 (1995)

    Article  MATH  Google Scholar 

  19. Ryu, S., Ko, S.: Direct numerical simulation of nucleate pool boiling using a two-dimensional lattice Boltzmann method. Nucl. Eng. Des. 248, 248–262 (2012)

    Article  Google Scholar 

  20. Mohammadpourfard, M., Aminfar, H., Sahraro, M.: Numerical simulation of nucleate pool boiling on the horizontal surface for ferrofluid under the effect of non-uniform magnetic field. Heat Mass Transf. 50(8), 1167–1176 (2014)

    Article  MATH  Google Scholar 

  21. Sato, Y., Niceno, B.: A depletable micro-layer model for nucleate pool boiling. J. Comput. Phys. 300, 20–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sato, Y., Niceno, B.: Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region. Int. J. Heat Mass Transf. 105, 505–524 (2017)

    Article  Google Scholar 

  23. Sato, Y., Niceno, B.: Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux. Int. J. Heat Mass Transf. 125, 876–890 (2018)

    Article  Google Scholar 

  24. Murallidharan, J., Giustini, G., Sato, Y., Ničeno, B., Badalassi, V., Walker, S.P.: Computational fluid dynamic simulation of single bubble growth under high-pressure pool boiling conditions. Nucl. Eng. Technol. 48(4), 859–869 (2016)

    Article  Google Scholar 

  25. Yazdani, M., Radcliff, T., Soteriou, M., Alahyari, A.A.: A high-fidelity approach towards simulation of pool boiling. Phys. Fluids 28(1), 012111 (2016)

    Article  Google Scholar 

  26. Esmaeeli, A., Tryggvason, G.: Computations of film boiling. Part I: numerical method. Int. J. Heat Mass Transf. 47(25), 5451–5461 (2004)

    Article  MATH  Google Scholar 

  27. Razavieh, A., Mortazavi, S.: The interface between fluid-like and solid-like behavior for drops suspended in two-phase Couette flow. Acta Mech. 226(4), 1105–1121 (2015)

    Article  MathSciNet  Google Scholar 

  28. Khalili, H., Mortazavi, S.: Numerical simulation of buoyant drops suspended in Poiseuille flow at nonzero Reynolds numbers. Acta Mech. 224(2), 269–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput Phys. 25(3), 220–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schumann, U., Sweet, R.A.: A direct method for the solution of Poisson’s equation with Neumann boundary conditions on a staggered grid of arbitrary size. J. Comput. Phys. 20(2), 171–182 (1976)

    Article  MathSciNet  Google Scholar 

  31. Udaykumar, H., Shyy, W., Rao, M.: ELAFINT-A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. In: 6th joint thermophysics and heat transfer conference, pp. 1996 (1996)

  32. Juric, D., Tryggvason, G.: Computations of boiling flows. Int. J. Multiph. Flow 24(3), 387–410 (1998)

    Article  MATH  Google Scholar 

  33. Welch, S.W.J., Wilson, J.: A Volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160(2), 662–682 (2000)

    Article  MATH  Google Scholar 

  34. Esmaeeli, A., Tryggvason, G.: Computations of explosive boiling in microgravity. J. Sci. Comput. J. Artic. 19(1), 163–182 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Irfan, M., Muradoglu, M.: A front tracking method for direct numerical simulation of evaporation process in a multiphase system. J. Comput. Phys. 337, 132–153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Esmaeeli, A., Tryggvason, G.: Computations of film boiling. Part II: multi-mode film boiling. Int. J. Heat Mass Transf. 47(25), 5463–5476 (2004)

    Article  MATH  Google Scholar 

  37. Berenson, P.J.: Film-boiling heat transfer from a horizontal surface. J. Heat Transf. 83(3), 351–356 (1961)

    Article  Google Scholar 

  38. Klimenko, V.V., Shelepen, A.G.: Film boiling on a horizontal plate—a supplementary communication. Int. J. Heat Mass Transf. 25(10), 1611–1613 (1982)

    Article  Google Scholar 

  39. Muradoglu, M., Romanò, F., Fujioka, H., Grotberg, J.B.: Effects of surfactant on propagation and rupture of a liquid plug in a tube. J. Fluid Mech. 872, 407–437 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Esmaeeli, A., Tryggvason, G.: A front tracking method for computations of boiling in complex geometries. Int. J. Multiph. Flow 30(7), 1037–1050 (2004)

    Article  MATH  Google Scholar 

  41. Razizadeh, M., Mortazavi, S., Shahin, H.: Drop breakup and drop pair coalescence using front-tracking method in three dimensions. Acta Mechanica, journal article 229(3), 1021–1043 (2018)

    Article  MathSciNet  Google Scholar 

  42. Pioro, I.L., Rohsenow, W., Doerffer, S.S.: Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface. Int. J. Heat Mass Transf. 47(23), 5033–5044 (2004)

    Article  MATH  Google Scholar 

  43. Sakashita, H.: Bubble growth rates and nucleation site densities in saturated pool boiling of water at high pressures. J. Nucl. Sci. Technol. 48(5), 734–743 (2011)

    Article  Google Scholar 

  44. Pioro, I.L., Rohsenow, W., Doerffer, S.S.: Nucleate pool-boiling heat transfer. II: assessment of prediction methods. Int. J. Heat Mass Transf. 47(23), 5045–5057 (2004)

    Article  MATH  Google Scholar 

  45. Dhir, V. K., Warrier, G. R., Aktinol, E.: Numerical simulation of pool boiling: a review. J. Heat Transf. 135(6), 061502 (2013)

    Article  Google Scholar 

  46. Hara, T.: The mechanism of nucleate boiling heat transfer. Int. J. Heat Mass Transf. 6(11), 1–17 (1963)

    Article  Google Scholar 

  47. Jiang, Y.Y., Osada, H., Inagaki, M., Horinouchi, N.: Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int. J. Heat Mass Transf. 56(1), 640–652 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mortazavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, A., Mortazavi, S. & Amini, M. A numerical study of heat transfer in saturated nucleate pool boiling process: a new analysis based on the inherent physics. Acta Mech 233, 3601–3622 (2022). https://doi.org/10.1007/s00707-022-03290-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03290-8

Navigation