Skip to main content
Log in

Vibration study of micromorphic annular sector plates using a 3D finite element analysis

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the micromorphic theory (MMT), the vibrational behavior of annular sector plates with different angles and subjected to various boundary conditions (BCs) is studied. To this end, the linear formulation of three-dimensional (3D) MMT is first presented and the matrix representation of this formulation is given. Then, a 3D size-dependent 8-node brick element is developed by the user element (UEL) subroutine within the commercial finite element software Abaqus to investigate the effects of microstructures on the vibration response of micromorphic structures. The effects of thickness-to-length scale parameter ratio and sector angle on the vibration behavior of the micromorphic annular sector plates are studied. Also, the results obtained by MMT are compared to those of the classical elasticity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma, Q., Clarke, D.R.: Size-dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  2. Zhu, H.T., Zbib, H.M., Aifantis, E.C.: Strain gradients and continuum modeling of size effect in metal matrix composites. Acta. Mech. 121, 165–176 (1995)

    Article  MATH  Google Scholar 

  3. Stolken, J.S., Evans, A.G.: A micro-bend test method for measuring the plasticity length scale. Acta. Metall. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  4. McElhancy, K.W., Valsssak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998)

    Article  Google Scholar 

  5. Taylor, M.B., Zbib, H.M., Khaleel, M.A.: Damage and size effect during superplastic deformation. Int. J. Plast. 18, 415–442 (2002)

    Article  MATH  Google Scholar 

  6. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  8. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  9. Eringen, A.C., Wegner, J.L.: Nonlocal continuum field theories. Appl. Mech. Rev. 56(2), B20–B22 (2003)

    Article  Google Scholar 

  10. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koiter, W.T.: “Couple stresses in the theory of elasticity”. In: i and II, Proc. K. Ned. Akad. Wet. (B) 67, 17–44, (1964)

  13. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids–I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Suhubi, E., Eringen, A.C.: Nonlinear theory of micro-elastic solids- II. Internat. J. Engng. Sci. 2, 389–404 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eringen, A.C.: Theory of micropolar plates. Z. Angew. Math. Phys. 18, 12–30 (1967)

    Article  Google Scholar 

  16. Eringen, A.C.: Theory of micropolar elasticity. Fract. Adv. Treat. 2, 621–728 (1968)

    MATH  Google Scholar 

  17. Eringen, A.C.: Microcontinuum Field Theories I, Foundations and Solids. Springer, NewYork (1999)

    Book  MATH  Google Scholar 

  18. Eringen, A.C.: Theory of thermo-microstretch elastic solids. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  MATH  Google Scholar 

  19. Pasternak, E., Mühlhaus, H.B.: Generalized homogenization procedures for granular materials. J. Eng. Math. 52, 199–229 (2005)

    Article  MATH  Google Scholar 

  20. Oliver, J., Mora, D.F., Huespe, A.E., Weyler, R.: A micromorphic model for steel fiber reinforced concrete. Int. J. Solids Struct. 49, 2990–3007 (2012)

    Article  Google Scholar 

  21. Cao, W., Yang, X., Tian, X.: Anti-plane problems of piezoelectric material with a micro-void or micro-inclusion based on micromorphic electroelastic theory. Int. J. Solids Struct. 49, 3185–3200 (2012)

    Article  Google Scholar 

  22. Cao, W.Z., Yang, X.H., Tian, X.B.: Numerical evaluation of size effect in piezoelectric micro-beam with linear micromorphic electroelastic theory. J. Mech. 30, 467–476 (2014)

    Article  Google Scholar 

  23. Lee, J.D., Wang, X.: Generalized micromorphic solids and fluids. Int. J.Eng.Sci. 49(12), 1378–1387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sansour, C., Skatulla, C., Zbib, H.: A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)

    Article  MATH  Google Scholar 

  25. Dillard, T., Forest, S., Ienny, P.: Micromorphic continuum modelling of the deformation and fracture behavior of nickel foams. Eur J Mech A Solids 25, 526–549 (2006)

    Article  MATH  Google Scholar 

  26. Neff, P., Forest, S.: A Geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure, Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87, 239–276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, J., Robert, K.P., Lee, J.D.: Micromorphic theory and its finite element formulation. Acta. Mech. 231, 1253–1284 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Isbuga, V., Regueiro, R.A.: Three-dimensional finite element analysis of finite deformation micromorphic linear isotropic elasticity. Int. J. Eng. Sci. 49, 1326–1336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ansari, R., Bazdid-Vahdati, M., Shakouri, A.H., et al.: Micromorphic prism element. Math. Mech. Solids. 22, 1438–1461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eremeyev, V.A., Lebedev, L.P., Cloud, M.J.: Acceleration waves in the nonlinear micromorphic continuum. Mech. Res. Commun. 93, 70–74 (2018)

    Article  Google Scholar 

  31. Ansari, R., Bazdid-Vahdati, M., Shakouri, A.H., Norouzzadeh, A., Rouhi, H.: Micromorphic first-order shear deformable plate element. Meccanica 51, 1797–1809 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Isbuga, V., Regueiro, R.A.: Finite element analysis of finite strain micromorphic Drucker-Prager plasticity. Comput. Struct. 193, 31–43 (2017)

    Article  Google Scholar 

  33. Ansari, R., Norouzzadeh, A., Shakouri, A.H., Bazdid-Vahdati, M., Rouhi, H.: Finite element analysis of vibrating microbeams and -plates using a three dimensional micropolar element. Thin-Walled Struct. 124, 489–500 (2018)

    Article  Google Scholar 

  34. Faraji-Oskouie, M., Bazdid-Vahdati, M., Ansari, R., Rouhi, H.: Finite element modeling of micromorphic continua in the context of three-dimensional elasticity. Contin.Mech. Thermodyn. 32, 99–110 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shaat, M., Ghavanloo, E., Emam, S.: A micromorphic beam theory for beams with elongated microstructures. Sci. Rep. 10(1), 1–18 (2020)

    Article  Google Scholar 

  36. Kohansal-Vajargah, M., Ansari, R.: Quadratic tetrahedral micropolar element for the vibration analysis of three-dimensional micro-structures. Thin-Walled Struct. 167, 108152 (2021)

    Article  Google Scholar 

  37. Kohansal-Vajargah, M., Ansari, R., Faraji-Oskouie, M., Bazdid-Vahdati, M.: Vibration analysis of two-dimensional structures using micropolar elements. Appl. Math. Mech. 42, 999–1012 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Abaqus/Standard Analysis User’s Manual, SIMULIA, (2012)

  39. Kumar. N., Leibinz. J.: Visualization of User Element in Abaqus. University Hannover, Germany (2016)

  40. Lakes, R.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ {\mathbf{A}}\, = \,\left[ {\begin{array}{*{20}c} {{\mathbf{A}}_{{11}} \quad } & 0 \\ {0\quad } & {{\mathbf{A}}_{{22}} } \\ \end{array} } \right]_{{27 \times 27}}, $$
$$ {\mathbf{A}}_{{11}} \, = \,{\mathbf{I}}_{3} \otimes \left[ {\quad \begin{array}{*{20}c} {a\quad } & {{\mathbf{a}}\quad } & {\mathbf{a}} \\ \quad & {\overline{{\mathbf{A}}} _{{11}} \quad } & {\overline{{\overline{{{\mathbf{A}}_{{11}} }} }} } \\ {{\text{sym}}.} & \quad & {\overline{{\overline{{{\mathbf{A}}_{{11}} }} }} } \\ \end{array} } \right], $$
$$ a = 2\left( {a_{1} + a_{2} + a_{5} + a_{8} } \right) + a_{3} + a_{4} + a_{6} + a_{7} + a_{9} + a_{10} + a_{11}, $$
$$ {\mathbf{a}} = \left[ {\begin{array}{*{20}c} {a_{1} + a_{2} + a_{3} } & {a_{1} + a_{4} + a_{5} } & {a_{2} + a_{5} + a_{6} } \\ \end{array} } \right], $$
$$ \overline{{\mathbf{A}}} _{{11}} \, = \,\left[ {\begin{array}{*{20}c} {a_{3} + a_{7} + a_{{10}} \quad } & {a_{1} + a_{8} + a_{{11}} \,} & {a_{2} + a_{8} + a_{9} } \\ \quad & {a_{4} + a_{7} + a_{9} \,} & {a_{5} + a_{8} + a_{{10}} } \\ {{\text{sym}}.\quad } & \quad & {a_{6} + a_{7} + a_{{11}} } \\ \end{array} } \right], $$
(A.1)
$$ \overline{{\overline{{{\mathbf{A}}_{{11}} }} }} \, = \,\left[ {\begin{array}{*{20}c} {a_{3} \quad } & {a_{1} \quad } & {a_{2} } \\ \quad & {a_{4} \quad } & {a_{5} } \\ {{\text{sym}}.\quad } & \quad & {a_{6} } \\ \end{array} } \right], $$
$$ {\mathbf{A}}_{{22}} \, = \,\left[ {\begin{array}{*{20}c} {a_{7} \quad } & {a_{{10}} \quad } & {a_{8} \quad } & {a_{{11}} \quad } & {a_{8} \quad } & {a_{9} } \\ \quad & {a_{7} \quad } & {a_{9} \quad } & {a_{8} \quad } & {a_{{11}} \quad } & {a_{8} } \\ \quad & \quad & {a_{7} \quad } & {a_{{10}} \quad } & {a_{8} \quad } & {a_{{11}} } \\ \quad & \quad & \quad & {a_{7} \quad } & {a_{9} \quad } & {a_{8} } \\ \quad & \quad & \quad & \quad & {a_{7} \quad } & {a_{{10}} } \\ {{\text{sym}}.\quad } & \quad & \quad & \quad & \quad & {a_{7} } \\ \end{array} } \right], $$
$$ {\mathbf{B}} = \left[ {\begin{array}{*{20}c} {{\mathbf{B}}_{{11}} \quad } & 0 \\ {0\quad } & {{\mathbf{B}}_{{22}} } \\ \end{array} } \right] ,$$
$$ {\mathbf{B}}_{{11}} \, = \,\left[ {\begin{array}{*{20}c} {b_{1} + b_{2} + b_{3} \quad } & {b_{1} \quad } & {b_{1} } \\ \quad & {b_{1} + b_{2} + b_{3} \quad } & {b_{1} } \\ {{\text{sym}}.} & \quad & {b_{1} + b_{2} + b_{3} } \\ \end{array} } \right],\,{\mathbf{B}}_{{22}} \, = \,{\mathbf{I}}_{3} \otimes \left[ {\begin{array}{*{20}c} {b_{2} \quad } & {b_{3} } \\ {b_{3} \quad } & {b_{2} } \\ \end{array} } \right] ,$$
(A.2)
$$ {\mathbf{C}}\, = \,\left[ {\begin{array}{*{20}c} {{\mathbf{C}}_{{11}} \quad } & 0 \\ {0\quad } & {{\mathbf{C}}_{{22}} } \\ \end{array} } \right],\,{\mathbf{C}}_{{11}} \, = \,\left[ {\begin{array}{*{20}c} {c_{1} + 2c_{2} \quad } & {c_{1} \quad } & {c_{1} } \\ \quad & {c_{1} + 2c_{2} \quad } & {c_{1} } \\ {{\text{sym}}.\quad } & \quad & {c_{1} + 2c_{2} } \\ \end{array} } \right],\,{\mathbf{C}}_{{22}} \, = \,c_{2} {\mathbf{I}}_{3}, $$
(A.3)
$$ {\mathbf{D}} = \left[ {\begin{array}{*{20}c} {{\mathbf{D}}_{{11}} }\quad & 0 \\ 0\quad & {{\mathbf{D}}_{{22}} } \\ \end{array} } \right],{\mathbf{D}}_{{11}} = \left[ {\begin{array}{*{20}c} {d_{1} + 2d_{2} }\quad & {d_{1} }\quad & {d_{1} } \\ {}\quad & {d_{1} + 2d_{2} }\quad & {d_{1} } \\ {sym.}\quad & {}\quad & {d_{1} + 2d_{2} } \\ \end{array} } \right], $$
(A.4)
$$ {\mathbf{D}}_{22} = d_{2} {\mathbf{I}}_{3} \otimes \left[ {\begin{array}{*{20}c} 1 & 1 \\ \end{array} } \right] ,$$
$$ c_{1} = \lambda , c_{2} = \mu , b_{1} = \eta - \tau , b_{2} = \kappa - \sigma , b_{3} = \chi - \sigma , d_{1} = \tau , d_{2} = \sigma.$$
(A.5)

Appendix B

$$ \begin{aligned} N_{1} & = \frac{1}{8}(1 + \xi )(1 + \eta )(1 + \zeta ) ,\\ N_{2} & = \frac{1}{8}(1 + \xi )(1 + \eta )(1 + \zeta ), \\ N_{3} & = \frac{1}{8}(1 - \xi )(1 + \eta )(1 - \zeta ), \\ N_{4} & = \frac{1}{8}(1 + \xi )(1 + \eta )(1 - \zeta ) ,\\ N_{5} & = \frac{1}{8}(1 + \xi )(1 - \eta )(1 + \zeta ), \\ N_{6} & = \frac{1}{8}(1 - \xi )(1 - \eta )(1 + \zeta ), \\ N_{7} & = \frac{1}{8}(1 - \xi )(1 - \eta )(1 - \zeta ), \\ N_{8} & = \frac{1}{8}(1 + \xi )(1 - \eta )(1 - \zeta ). \\ \end{aligned} $$
(B.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Vajargah, M.K. & Bakamal, A. Vibration study of micromorphic annular sector plates using a 3D finite element analysis. Acta Mech 233, 3663–3677 (2022). https://doi.org/10.1007/s00707-022-03281-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03281-9

Navigation