Skip to main content
Log in

Transient response analysis of a system with nonlinear stiffness and nonlinear damping excited by Gaussian white noise based on complex fractional moments

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An analytical method based on complex fractional moments (CFMs) is presented to obtain the transient response probability density of a dynamic system with nonlinearity in both stiffness and damping excited by Gaussian white noise. The CFM is a new kind of statistical moment developed in recent years and is related to the Mellin transform of a probability density function. In the present method, first, the equivalent linearization technique is applied to determine the equivalent natural frequency of the system, which is a function of the response amplitude. Then, using the equivalent natural frequency and the stochastic averaging procedure, the stochastic differential equation with respect to the response amplitude and the associated Fokker–Planck equation are derived. The Mellin transform of the Fokker–Planck equation yields the governing equations of the amplitude CFMs. The governing equations are given by simultaneous linear ordinary differential equations. Finally, the inverse Mellin transform of the CFMs obtained from the above equations leads to the response probability density function. In numerical examples, three types of nonlinear stochastic systems are considered. It is shown that the results of the transient response probability densities obtained by the present method agree well with the corresponding Monte Carlo simulation results, including their tail region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin, Y.K., Cai, G.Q.: Probabilistic Structural Dynamics. Advanced Theory and Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  2. Cai, G.Q., Zhu, W.Q.: Elements of Stochastic Dynamics. World Scientific, New Jersey (2016). https://doi.org/10.1142/9794

  3. Caughey, T.K., Dienes, J.K.: Analysis of a nonlinear first-order system with a white noise input. J. Appl. Phys. 32, 2476–2479 (1961). https://doi.org/10.1063/1.1777094

    Article  MathSciNet  MATH  Google Scholar 

  4. Caughey, T.K.: Nonlinear theory of random vibration. Adv. Appl. Mech. 11, 209–253 (1971). https://doi.org/10.1016/S0065-2156(08)70343-0

    Article  Google Scholar 

  5. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  6. Spencer, B.F., Jr., Bergman, L.A.: On the numerical solution of the Fokker-Planck equation for nonlinear stochastic system. Nonlinear Dyn. 4, 357–372 (1993). https://doi.org/10.1007/BF00120671

    Article  Google Scholar 

  7. Yu, J.S., Cai, G.Q., Lin, Y.K.: A new path integration procedure based on Gauss-Legendre scheme. Int. J. Nonlinear Mech. 32(4), 759–768 (1997). https://doi.org/10.1016/S0020-7462(96)00096-0

    Article  MATH  Google Scholar 

  8. Yu, J.S., Lin, Y.K.: Numerical path integration of a non-homogeneous Markov process. Int. J. Nonlinear Mech. 39, 1493–1500 (2004). https://doi.org/10.1016/j.ijnonlinmec.2004.02.011

    Article  MATH  Google Scholar 

  9. Naess, A., Johnsen, J.M.: Response statistics of nonlinear, compliant offshore structures by the path integral solution method. Probab. Eng. Mech. 8(2), 91–106 (1993). https://doi.org/10.1016/0266-8920(93)90003-E

    Article  Google Scholar 

  10. Naess, A., Moe, V.: Efficient path integration methods for nonlinear dynamic systems. Probab. Eng. Mech. 15(2), 221–231 (2000). https://doi.org/10.1016/S0266-8920(99)00031-4

    Article  Google Scholar 

  11. Liu, Q., Davies, H.G.: The non-stationary response probability density functions of non-linearly damped oscillators subjected to white noise excitations. J. Sound Vib. 139(3), 425–435 (1990). https://doi.org/10.1016/0022-460X(90)90674-O

    Article  Google Scholar 

  12. Muscolino, G., Ricciardi, G., Vasta, M.: Stationary and non-stationary probability density functions for non-linear oscillators. Int. J. Nonlinear Mech. 32, 1051–1064 (1997). https://doi.org/10.1016/S0020-7462(96)00134-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, X., Zhang, Y., Pandey, M.D., Zhao, Y.: Probability density function for stochastic response of non-linear oscillation system under random excitation. Int. J. Nonlinear Mech. 45(8), 800–808 (2010). https://doi.org/10.1016/j.ijnonlinmec.2010.06.002

    Article  Google Scholar 

  14. Jin, T., Jin, X.L., Wang, Z.L., Huang, Z.: Transient probability density of nonlinear multi-degree-of-freedom system with time delay. Mech. Res. Commun. 44, 15–23 (2012). https://doi.org/10.1016/j.mechrescom.2012.05.001

    Article  Google Scholar 

  15. Guo, S.S.: Transient responses of stochastic systems under stationary excitations. Probab. Eng. Mech. 53, 59–65 (2018). https://doi.org/10.1016/j.probengmech.2018.05.002

    Article  Google Scholar 

  16. Guo, S.S.: Nonstationary solutions of nonlinear dynamical systems excited by Gaussian white noise. Nonlinear Dyn. 92, 613–626 (2018). https://doi.org/10.1007/s11071-018-4078-4

    Article  Google Scholar 

  17. Cottone, G., Di Paola, M.: On the use of fractional calculus for the probabilistic characterization of random variables. Probab. Eng. Mech. 24(3), 321–330 (2009). https://doi.org/10.1016/j.probengmech.2008.08.002

    Article  Google Scholar 

  18. Cottone, G., Di Paola, M., Metzler, R.: Fractional calculus approach to the statistical characterization of random variables and vectors. Phys. A 389, 909–920 (2010). https://doi.org/10.1016/j.physa.2009.11.018

    Article  MathSciNet  Google Scholar 

  19. Di Paola, M., Pinnola, P.: Riesz fractional integrals and complex fractional moments for the probabilistic characterization of random variables. Probab. Eng. Mech. 29, 149–156 (2012). https://doi.org/10.1016/j.probengmech.2011.11.003

    Article  Google Scholar 

  20. Dai, H., Ma, Z., Li, L.: An improved complex fractional moment-based approach for the probabilistic characterization of random variables. Probab. Eng. Mech. 53, 52–58 (2018). https://doi.org/10.1016/j.probengmech.2018.05.005

    Article  Google Scholar 

  21. Di Paola, M.: Fokker Planck equation solved in terms of complex fractional moments. Probab. Eng. Mech. 38, 70–76 (2014). https://doi.org/10.1016/j.probengmech.2014.09.003

    Article  Google Scholar 

  22. Di Matteo, A., Di Paola, M., Pirrotta, A.: Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments. Nonlinear Dyn. 77, 729–738 (2014). https://doi.org/10.1007/s11071-014-1333-1

    Article  MATH  Google Scholar 

  23. Di Matteo, A., Di Paola, M., Pirrotta, A.: Poisson white noise parametric input and response by using complex fractional moments. Probab. Eng. Mech. 38, 119–126 (2014). https://doi.org/10.1016/j.probengmech.2014.07.003

    Article  Google Scholar 

  24. Itoh, D., Tsuchida, T., Kimura, K.: An analysis of a nonlinear system excited by combined Gaussian and Poisson white noises using complex fractional moments. Theor. Appl. Mech. Jpn. 64, 103–114 (2018). https://doi.org/10.11345/nctam.64.103

  25. Alotta, G., Di Paola, M.: Probabilistic characterization of nonlinear systems under \(\alpha \)-stable white noise via complex fractional moments. Probab. Eng. Mech. 420, 265–276 (2015). https://doi.org/10.1016/j.physa.2014.10.091

    Article  MathSciNet  MATH  Google Scholar 

  26. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Nonlinear Mech. 21(2), 111–134 (1986). https://doi.org/10.1016/0020-7462(86)90025-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin, X., Wang, Y., Huang, Z., Di Paola, M.: Constructing transient response probability density of non-linear system through complex fractional moments. Int. J. Nonlinear Mech. 65, 253–259 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.06.004

    Article  Google Scholar 

  28. Xie, X., Li, J., Liu, D., Guo, R.: Transient response of nonlinear vibro-impact system under Gaussian white noise excitation through complex fractional moments. Acta Mech. 228, 1153–1163 (2017). https://doi.org/10.1007/s00707-016-1761-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Niu, L., Xu, W., Guo, Q.: Transient response of the time-delay system excited by Gaussian noise based on complex fractional moments. Chaos 31, 053111–11 (2021). 053111-11 (2021). https://doi.org/10.1063/5.0033593

  30. Spanos, P.D., Sofi, A., Di Paola, M.: Nonstationary response envelope probability densities of nonlinear oscillators. ASME J. Appl. Mech. 74(2), 315–324 (2007). https://doi.org/10.1115/1.2198253

    Article  MATH  Google Scholar 

  31. Kougioumtzoglou, I.A., Spanos, P.D.: Stochastic response analysis of the softening Duffing oscillator and ship capsizing probability determination via a numerical path integral approach. Probab. Eng. Mech. 35, 67–74 (2014). https://doi.org/10.1016/j.probengmech.2013.06.001

    Article  Google Scholar 

  32. Kougioumtzoglou, I.A., Zhang, Y., Beer, M.: Softening Duffing oscillator reliability assessment subject to evolutionary stochastic excitation. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 2(2), C4015001 (2016). https://doi.org/10.1061/AJRUA6.0000828

  33. Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Dover Publications, New York (2003)

    MATH  Google Scholar 

  34. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1 and 2. Gordon & Breach, New York (1967)

  35. Spanos, P.-T.D.: Linearization techniques for non-linear dynamical systems. Report EERL 7Q-04, Earthquake Engineering Research Laboratory, California Institute of Technology (1976)

  36. Iwan, W.D., Spanos, P.-T.D.: Response envelope statistics for nonlinear oscillators with random excitation. ASME J. Appl. Mech. 45(1), 170–174 (1978). https://doi.org/10.1115/1.3424222

    Article  MATH  Google Scholar 

  37. Lin, Y.K.: Probabilistic Theory of Structural Dynamics. McGraw-Hill, New York (1967)

    Google Scholar 

  38. Caughey, T.K.: Derivation and application of the Fokker-Planck equation to discrete nonlinear dynamic systems subjected to white random excitation. J. Acoust. Soc. Am. 35, 1683–1692 (1963). https://doi.org/10.1121/1.1918788

    Article  MathSciNet  Google Scholar 

  39. Zhu, W.Q., Huang, Z.L., Suzuki, Y.: Response and stability of strongly non-linear oscillators under wide-band random excitation. Int. J. Nonlinear Mech. 36(8), 1235–1250 (2001). https://doi.org/10.1016/S0020-7462(00)00093-7

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, X., Ji, J.C., Hansen, C.H., Tan, C.: The response of a Duffing-van der Pol oscillator under delayed feedback control. J. Sound Vib. 291(3), 644–655 (2006). https://doi.org/10.1016/j.jsv.2005.06.033

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP18K13712. The authors are deeply grateful to Prof. Emeritus Koji Kimura for his comment in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Tsuchida.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (rar 1020 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, D., Tsuchida, T. Transient response analysis of a system with nonlinear stiffness and nonlinear damping excited by Gaussian white noise based on complex fractional moments. Acta Mech 233, 2781–2796 (2022). https://doi.org/10.1007/s00707-022-03264-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03264-w

Navigation