Skip to main content
Log in

Nonlinear vibration, stability, and bifurcation of rotating axially moving conical shells

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The nonlinear vibration characteristics of rotating axially moving conical shells are investigated in the current paper. The nonlinear equations of motion and strain compatibility equation based on Donnell’s nonlinear shell theory are obtained. Three nonlinear equations of motion are reduced to a radial equation by applying the appropriate Airy stress function, forming a set of equations with the compatibility equation. The compatibility equation is solved by employing the seven degrees of freedom with respect to the system’s flexural mode shape. By substituting the flexural mode shape into the equation of motion and applying the Galerkin method, seven nonlinear coupled nonhomogeneous ODEs are achieved, then the set of equations is transformed into the normal form where it has been solved by the numerical method. The effects of the axial and rotational velocity on bifurcation diagrams, frequency response curves, time history, and the phase portraits of the system are discussed. The results of the present paper are validated against available data, and good agreements are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sofiyev, A.: The nonlinear vibration of FGM truncated conical shells. Compos. Struct. 94(7), 2237–2245 (2012)

    Article  MathSciNet  Google Scholar 

  2. Chen, Y., et al.: Vibrations of high speed rotating shells with calculations for cylindrical shells. J. Sound Vib. 160(1), 137–160 (1993)

    Article  MATH  Google Scholar 

  3. Mohamadi, A., Shahgholi, M., Ghasemi, F.A.: Free vibration and stability of an axially moving thin circular cylindrical shell using multiple scales method. Meccanica 54(14), 2227–2246 (2019)

    Article  MathSciNet  Google Scholar 

  4. Hua, L.: Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions. Compos. Sci. Technol. 60(16), 2945–2955 (2000)

    Article  Google Scholar 

  5. Dung, D.V., Thiem, H.T.: Research on free vibration frequency characteristics of rotating functionally graded material truncated conical shells with eccentric functionally graded material stringer and ring stiffeners. Lat. Am. J. Solids Struct. 13(14), 2679–2705 (2016)

    Article  Google Scholar 

  6. Abolhassanpour, H., et al.: Stability and vibration analysis of an axially moving thin walled conical shell. J. Vib. Control 1077546321997600 (2021)

  7. Wang, Y., et al.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—Part I: numerical solution. Int. J. Mech. Sci. 52(9), 1217–1224 (2010)

    Article  Google Scholar 

  8. Sarkheil, S., Foumani, M.S.: An improvement to motion equations of rotating truncated conical shells. Eur. J. Mech.-A/Solids 62, 110–120 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332(24), 6434–6450 (2013)

    Article  Google Scholar 

  10. Wang, Y., Ding, H., Chen, L.-Q.: Vibration of axially moving hyperelastic beam with finite deformation. Appl. Math. Model. 71, 269–285 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sofiyev, A., Pancar, E.: The effect of heterogeneity on the parametric instability of axially excited orthotropic conical shells. Thin-Walled Struct. 115, 240–246 (2017)

    Article  Google Scholar 

  12. Sofiyev, A., Osmancelebioglu, E.: The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory. Compos. B Eng. 120, 197–211 (2017)

    Article  Google Scholar 

  13. Sofiyev, A., Kuruoglu, N.: Combined effects of elastic foundations and shear stresses on the stability behavior of functionally graded truncated conical shells subjected to uniform external pressures. Thin-Walled Struct. 102, 68–79 (2016)

    Article  Google Scholar 

  14. Shin, C., Chung, J., Kim, W.: Dynamic characteristics of the out-of-plane vibration for an axially moving membrane. J. Sound Vib. 286(4–5), 1019–1031 (2005)

    Article  MATH  Google Scholar 

  15. Najafov, A., et al.: Vibration and stability of axially compressed truncated conical shells with functionally graded middle layer surrounded by elastic medium. J. Vib. Control 20(2), 303–320 (2014)

    Article  MathSciNet  Google Scholar 

  16. Najafov, A., Sofiyev, A., Kuruoglu, N.: On the solution of nonlinear vibration of truncated conical shells covered by functionally graded coatings. Acta Mech. 225(2), 563–580 (2014)

    Article  MATH  Google Scholar 

  17. Lin, W., Qiao, N.: Vibration and stability of an axially moving beam immersed in fluid. Int. J. Solids Struct. 45(5), 1445–1457 (2008)

    Article  MATH  Google Scholar 

  18. Leissa, A.W.: Vibration of Shells, vol. 288. Scientific and Technical Information Office, National Aeronautics and Space (1973)

  19. Amabili, M.: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib. 264(5), 1091–1125 (2003)

    Article  Google Scholar 

  20. Archibald, F.: The vibration of a string having a uniform motion along its length. J. Appl. Mech. 25(3), 347–348 (1958)

    Article  MATH  Google Scholar 

  21. Simpson, A.: Transverse modes and frequencies of beams translating between fixed end supports. J. Mech. Eng. Sci. 15(3), 159–164 (1973)

    Article  Google Scholar 

  22. Armand Robinson, M.T.: Analysis of the vibration of axially moving viscoelastic plate with free edges using differential quadrature method. J. Vib. Control 24(17), 3908–3919 (2018)

    Article  MathSciNet  Google Scholar 

  23. Banichuk, N., et al.: On the limit velocity and buckling phenomena of axially moving orthotropic membranes and plates. Int. J. Solids Struct. 48(13), 2015–2025 (2011)

    Article  Google Scholar 

  24. Banichuk, N., et al.: Mechanics of Moving Materials, vol. 207. Springer, New York (2014)

    MATH  Google Scholar 

  25. Anh, V.T.T., Duc, N.D.: Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments. Acta Mech. 230(1), 157–178 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ding, H., et al.: Equilibrium bifurcation of high-speed axially moving Timoshenko beams. Acta Mech. 227(10), 3001–3014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ding, H., Tang, Y.-Q., Chen, L.-Q.: Frequencies of transverse vibration of an axially moving viscoelastic beam. J. Vib. Control 23(20), 3504–3514 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ghayesh, M.H., Amabili, M.: Nonlinear stability and bifurcations of an axially moving beam in thermal environment. J. Vib. Control 21(15), 2981–2994 (2015)

    Article  MathSciNet  Google Scholar 

  29. Ghayesh, M.H., Kafiabad, H.A., Reid, T.: Sub-and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49(1), 227–243 (2012)

    Article  Google Scholar 

  30. Kerboua, Y., Lakis, A., Hmila, M.: Vibration analysis of truncated conical shells subjected to flowing fluid. Appl. Math. Model. 34(3), 791–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, C.: Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34(24), 3179–3190 (1997)

    Article  MATH  Google Scholar 

  32. Saksa, T., et al.: Dynamic analysis for axially moving viscoelastic panels. Int. J. Solids Struct. 49(23–24), 3355–3366 (2012)

    Article  Google Scholar 

  33. Kiani, Y., Dimitri, R., Tornabene, F.: Free vibration study of composite conical panels reinforced with FG-CNTs. Eng. Struct. 172, 472–482 (2018)

    Article  Google Scholar 

  34. Lim, C., Liew, K.: Vibratory behaviour of shallow conical shells by a global Ritz formulation. Eng. Struct. 17(1), 63–70 (1995)

    Article  Google Scholar 

  35. Singha, T.D., et al.: Free vibration analysis of rotating pretwisted composite sandwich conical shells with multiple debonding in hygrothermal environment. Eng. Struct. 204, 110058 (2020)

    Article  Google Scholar 

  36. Sofiyev, A.: Dynamic response of an FGM cylindrical shell under moving loads. Compos. Struct. 93(1), 58–66 (2010)

    Article  Google Scholar 

  37. Deniz, A., Sofiyev, A.: The nonlinear dynamic buckling response of functionally graded truncated conical shells. J. Sound Vib. 332(4), 978–992 (2013)

    Article  Google Scholar 

  38. Sofiyev, A.: Nonlinear free vibration of shear deformable orthotropic functionally graded cylindrical shells. Compos. Struct. 142, 35–44 (2016)

    Article  Google Scholar 

  39. Sofiyev, A.: Review of research on the vibration and buckling of the FGM conical shells. Compos. Struct. 211, 301–317 (2019)

    Article  Google Scholar 

  40. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  41. Sofiyev, A., Kuruoglu, N.: Nonlinear buckling of an FGM truncated conical shell surrounded by an elastic medium. Int. J. Press. Vessels Pip. 107, 38–49 (2013)

    Article  Google Scholar 

  42. Mohamadi, A., Shahgholi, M., Ghasemi, F.A.: Nonlinear vibration of axially moving simply-supported circular cylindrical shell. Thin-Walled Struct. 156, 107026 (2020)

    Article  Google Scholar 

  43. Sofiyev, A.: Nonlinear buckling behavior of FGM truncated conical shells subjected to axial load. Int. J. Nonlinear Mech. 46(5), 711–719 (2011)

    Article  MathSciNet  Google Scholar 

  44. Soedel, W., Qatu, M.S.: Vibrations of Shells and Plates. Acoustical Society of America (2005)

  45. Abolhassanpouri, H., et al.: Nonlinear vibration analysis of an axially moving thin-walled conical shell. Int. J. Nonlinear Mech. 134, 103747 (2021)

    Article  Google Scholar 

  46. Sofiyev, A., Avey, M., Kuruoglu, N.: An approach to the solution of nonlinear forced vibration problem of structural system reinforced with advanced materials in the presence of viscous damping. Mech. Syst. Signal Process. 161, 107991 (2021)

    Article  Google Scholar 

  47. Doedel, E., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I): bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1(03), 493–520 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tsumoto, K., Ueta, T., Yoshinaga, T., Kawakami, H.: Bifurcation analyses of nonlinear dynamical systems: from theory to numerical computations. Nonlinear Theory Appl. IEICE 3, 458–476 (2012)

    Article  Google Scholar 

  49. Sofiyev, A.: The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Compos. Struct. 89(3), 356–366 (2009)

    Article  Google Scholar 

  50. Lam, K., Loy, C.: Analysis of rotating laminated cylindrical shells by different thin shell theories. J. Sound Vib. 186(1), 23–35 (1995)

    Article  MATH  Google Scholar 

  51. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Florida (2003)

    Book  Google Scholar 

  52. Talebitooti, M., et al.: Free vibrations of rotating composite conical shells with stringer and ring stiffeners. Arch. Appl. Mech. 80(3), 201–215 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

All authors approved the version of manuscript to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shahgholi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$L_{11} = S\frac{{e^{x} }}{\cot \left( \alpha \right)}\left( {\frac{{\partial^{2} }}{{\partial x^{2} }} + 3\frac{\partial }{\partial x} + 2} \right) - \cot \left( \alpha \right) \times \int gd\varphi,$$
(54)
$$\begin{aligned} L_{12} = & \frac{1}{{e^{2x} }}\left( { - A_{3} \left( {\frac{{\partial^{4} }}{{\partial \varphi^{4} }} + 2\frac{{\partial^{2} }}{{\partial \varphi^{2} }} + \frac{{\partial^{4} }}{{\partial x^{4} }} - 4\frac{{\partial^{3} }}{{\partial x^{3} }} + 4\frac{{\partial^{2} }}{{\partial x^{2} }}} \right)} \right. \\ & - 2\left( {A_{4} + A_{6} } \right)\left( {\frac{{\partial^{4} }}{{\partial x^{2} \partial \varphi^{2} }} - 2\frac{{\partial^{3} }}{{\partial x\partial \varphi^{2} }} + \frac{{\partial^{2} }}{{\partial \varphi^{2} }}} \right) \\ & - S^{4} e^{4x} \left( {\rho h\left( {\frac{{\partial^{2} }}{{\partial t^{2} }} + \frac{{2V_{c} \left( t \right)}}{{Se^{x} }}\frac{\partial }{\partial t} + \frac{{V_{c} \left( t \right)^{2} }}{{S^{2} e^{2x} }}\frac{{\partial^{2} }}{{\partial x^{2} }}} \right)} \right) \\ & + \left. {C\left( {\frac{\partial }{\partial t} + \frac{{V_{c} \left( t \right)}}{{Se^{x} }}\frac{\partial }{\partial t}} \right)} \right) + \int gd\varphi \times (\frac{1}{{se^{x} }}\left( {\frac{{\partial^{2} }}{{\partial \varphi^{2} }} + \frac{\partial }{\partial x}} \right) \\ & + \rho h\omega_{r}^{2} \left( {se^{x} \frac{\partial }{\partial x}\cos \left( \alpha \right)\cot \left( \alpha \right) + \frac{{\partial^{2} }}{{\partial \varphi^{2} }} + \cos \left( \alpha \right)^{2} } \right), \\ \end{aligned}$$
(55)
$$\begin{aligned} L_{13} = & e^{2x} \left( {\frac{{\partial^{2} }}{{\partial \varphi^{2} }} + \frac{\partial }{\partial x} + 2} \right)\left( {\frac{{\partial^{2} }}{{\partial x^{2} }} - \frac{\partial }{\partial x}} \right) \\ & + \left( {\frac{{\partial^{2} }}{{\partial x^{2} }} + 3\frac{\partial }{\partial x} + 2} \right)\left( {\frac{{\partial^{2} }}{{\partial \varphi^{2} }} + \frac{\partial }{\partial x}} \right) \\ & - 2\left( {\frac{{\partial^{2} }}{\partial x\partial \varphi } + \frac{\partial }{\partial \varphi }} \right)\left( {\frac{{\partial^{2} }}{\partial x\partial \varphi } - \frac{\partial }{\partial \varphi }} \right), \\ \end{aligned}$$
(56)
$$\begin{aligned} L_{21} = & B_{1} \cdot e^{2x} \frac{{\partial^{4} }}{{\partial \varphi^{4} }} + 2\left( {\frac{1 + \mu }{{Eh}} - \frac{\mu }{Eh}} \right)e^{2x} \frac{{\partial^{4} }}{{\partial x^{2} \partial \varphi^{2} }} + 4\left( {\frac{1 + \mu }{{Eh}} - \frac{\mu }{Eh}} \right)e^{2x} \frac{{\partial^{3} }}{{\partial x\partial \varphi^{2} }} \\ & + 2\left( {\frac{1 + \mu }{{Eh}} - \frac{\mu }{Eh} + \frac{1}{Eh}} \right)e^{2x} \frac{{\partial^{2} }}{{\partial \varphi^{2} }} + B_{1} \cdot e^{2x} \frac{{\partial^{4} }}{{\partial x^{4} }} + 4B_{1} .e^{2x} \frac{{\partial^{3} }}{{\partial x^{3} }} + 4B_{1} .e^{2x} \frac{{\partial^{2} }}{{\partial x^{2} }}, \\ \end{aligned}$$
(57)
$$L_{22} = - B_{4} \frac{{\partial^{4} }}{{\partial \varphi^{4} }} - \left( {\frac{{Se^{x} }}{\cot \left( \alpha \right)}} \right)\frac{{\partial^{2} }}{{\partial x^{2} }},$$
(58)
$$\begin{aligned} L_{23} = & - \left( {\frac{\partial }{\partial \varphi }} \right)^{2} + 2\left( {\frac{\partial }{\partial \varphi }} \right)\left( {\frac{{\partial^{2} }}{\partial x\partial \varphi }} \right) \\ & - \left( {\frac{\partial }{\partial x} - \frac{{\partial^{2} }}{{\partial x^{2} }}} \right)\left( {\frac{{\partial^{2} }}{{\partial \varphi^{2} }}} \right) - \left( {\frac{{\partial^{2} }}{\partial x\partial \varphi }} \right)^{2} \\ & - \left( {\frac{\partial }{\partial x} - \frac{{\partial^{2} }}{{\partial x^{2} }}} \right)\left( {\frac{\partial }{\partial x}} \right). \\ \end{aligned}$$
(59)

Appendix 2

$$\begin{aligned} & A_{29} \left( {A_{1,n} } \right)^{3} + A_{37} \left( {A_{1,n} } \right)^{2} A_{2,n} + \left( {A_{48} \left( {A_{2,n} } \right)^{2} + A_{60} \left( {A_{1,n} } \right)^{2} + (A_{5,0} A_{90} + A_{3,0} A_{94} + A_{93} } \right)A_{10} + A_{66} \left( {A_{3,0} } \right)^{2} \\ & \quad + \left( {A_{5,0} A_{97} + A_{3,0} A_{94} + A_{96} } \right)A_{30} + A_{42} \left( {B_{1,n} } \right)^{2} + A_{54} \left( {B_{2,n} } \right)^{2} + A_{72} \left( {A_{5,0} } \right)^{2} + A_{85} B_{1,n} B_{2,n} + \left( {A_{5,0} A_{98} } \right) \\ & \quad + \left( {A_{1,5} } \right)A_{1,n} + A_{31} \left( {A_{2,n} } \right)^{3} + \left( {A_{62} \left( {A_{1,0} } \right)^{2} } \right. + \left( {A_{109} A_{3,0} + A_{110} A_{5,0} + A_{108} } \right)A_{1,0} + A_{68} \left( {A_{3,0} } \right)^{2} \\ & \quad + A_{3,0} \left( {A_{112} A_{5,0} + A_{111} } \right) + A_{43} \left( {B_{1,n} } \right)^{2} + A_{56} \left( {B_{2,n} } \right)^{2} + A_{74} \left( {A_{5,0} } \right)^{2} + A_{100} B_{1,n} B_{2,n} + A_{113} A_{5,0} + \left. {A_{17} } \right)\\ & A_{2,n} - F\cos \left( {\omega t} \right), \\ \end{aligned}$$
(60)
$$\begin{aligned} & B_{2} \frac{{d^{2} }}{{dt^{2} }}\left( {B_{1,n} } \right) + B_{4} \frac{{d^{2} }}{{dt^{2} }}\left( {B_{2,n} } \right) + B_{9} \frac{d}{dt}\left( {B_{1,n} } \right) + B_{11} \frac{d}{dt}\left( {B_{2,n} } \right) + B_{6} B_{1,n} + B_{18} B_{2,n} + B_{30} \left( {B_{1,n} } \right)^{3} + B_{32} \left( {B_{2,n} } \right)^{3} \\ & \quad + \left( {A_{1,n} } \right)^{2} \left( {B_{36} B_{1,n} + B_{38} B_{2,n} } \right) + B_{44} \left( {B_{1,n} } \right)^{2} B_{2,n} + B_{49} \left( {A_{2,n} } \right)^{2} B_{1,n} + B_{50} \left( {A_{2,n} } \right)^{2} B_{2,n} + B_{55} \left( {B_{2,n} } \right)^{2} B_{1,n} \\ & \quad + A_{1,0}^{2} \left( {B_{61} B_{1,n} + B_{63} B_{2,n} } \right) + A_{3,0}^{2} \left( {B_{67} B_{1,n} + B_{69} B_{2,n} } \right) + A_{5,0}^{2} \left( {B_{73} B_{1,n} + B_{75} B_{2,n} } \right)\\ &\quad + A_{1,n} A_{2,n} \left( {B_{79} B_{1,n} + B_{80} B_{2,n} } \right) \\ & \quad + B_{1,n} A_{1,0} \left( {B_{119} A_{3,0} + B_{118} } \right) + \left( {A_{5,0} B_{120} A_{1,0} + A_{3,0} B_{122} + B_{123} } \right)A_{5,0} + A_{3,0} B_{121} )B_{1,n} \\ & \quad + B_{2,n} A_{1,0} \left( {A_{3,0} B_{125} + A_{5,0} B_{126} + B_{124} } \right) + B_{2,n} \left( {A_{5,0} B_{128} + B_{127} } \right)A_{3,0}, \\ \end{aligned}$$
(61)
$$\begin{aligned} & E_{29} \left( {A_{1,n} } \right)^{3} + E_{37} \left( {A_{1,n} } \right)^{2} A_{2,n} + \left( {E_{48} \left( {A_{2,n} } \right)^{2} + E_{60} \left( {A_{1,n} } \right)^{2} + \left( {A_{5,0} E_{95} + A_{3,0} E_{94} + E_{93} } \right)} \right.A_{10} \\ & \quad + E_{66} \left( {A_{3,0} } \right)^{2} + \left( {A_{5,0} E_{97} + E_{96} } \right)A_{30} + E_{42} \left( {B_{1,n} } \right)^{2} + E_{56} \left( {B_{2,n} } \right)^{2} + E_{72} \left( {A_{5,0} } \right)^{2} \\ & \quad + \left. {E_{85} B_{1,n} \left( t \right)B_{2,n} + A_{5,0} E_{98} + E_{1,5} } \right)A_{1,n} + \left( {A_{2,n} } \right)^{2} (E_{31} \left( {A_{2,n} } \right)^{2} + (E_{62} \left( {A_{1,0} } \right)^{2} \\ & \quad + \left( {E_{109} A_{3,0} + E_{110} A_{5,0} + E_{108} } \right)A_{1,0} + E_{68} \left( {A_{3,0} } \right)^{2} + A_{3,0} \left( {E_{112} A_{5,0} + EA_{111} } \right) \\ & \quad + E_{43} \left( {B_{1,n} } \right)^{2} + E_{56} \left( {B_{2,n} } \right)^{2} + E_{74} \left( {A_{5,0} } \right)^{2} \left. { + E_{100} B_{1,n} B_{2,n} + E_{113} A_{5,0} + E_{17} } \right)A_{2,n}, \\ \end{aligned}$$
(62)
$$\begin{aligned} & G_{30} \left( {B_{1,n} } \right)^{3} + G_{44} \left( {B_{1,n} } \right)^{2} B_{2,n} + B_{49} \left( {A_{2,n} } \right)^{2} B_{1,n} + \left( G_{55} \left( {B_{2,n} } \right)^{2} + G_{67} \left( {A_{3,0} } \right)^{2}\right.\\ &\quad + \left( {E_{122} A_{5,0} + G_{119} A_{1,0} + E_{112} } \right) A_{3,0} + G_{73} \left( {A_{5,0} } \right)^{2} \\ & \quad + \left( {E_{120} A_{1,0} + E_{123} } \right)A_{5,0} + \left( {A_{1,n} } \right)^{2} G_{36} + \left( {A_{2,n} } \right)^{2} G_{49}\\ &\quad + A_{1,0}^{2} G_{61} + G_{79} A_{2,n} A_{1,n} + A_{1,0} \left( t \right)G_{118} \left. { + G_{16} } \right)B_{1,n} + \left( {A_{3,0} } \right)^{2} G_{69} \\ & \quad + \left. {\left( {E_{125} A_{1,0} + E_{128} A_{5,0} + E_{127} } \right)A_{3,0} } \right) + \left( {A_{5,0} } \right)^{2} G_{75} + \left( {\left. {E_{126} A_{1,0} + E_{129} } \right)A_{5,0} + G_{38} \left( {A_{1,n} } \right)^{2} + G_{50} \left( {A_{2,n} } \right)^{2} } \right. \\ & \quad + \left. {G_{63} \left( {A_{1,0} } \right)^{2} + G_{90} A_{2,n} A_{1,n} + E_{124} A_{1,0} + G_{18} } \right)B_{2,n} + E_{126} A_{3,0} A_{5,0}, \\ \end{aligned}$$
(63)
$$\begin{aligned} & K_{33} \left( {A_{1,0} } \right)^{3} + \left( {K_{64} \left( {A_{3,0} } \right)^{2} + \left( {A_{5,0} K_{65} + A_{3,0} K_{64} + K_{26} } \right)} \right)\left( {A_{1,0} } \right)^{2}\\ &\quad + \left( {K_{70} \left( {A_{3,0} } \right)^{2} + \left( {K_{131} A_{5,0} + K_{130} } \right)A_{5,0} + \left( {A_{1,n} } \right)^{2} K_{39} }K_{45} \left( {B_{1,n} } \right)^{2} \right. \\ & \quad \left. + { + K_{51} \left( {A_{2,n} } \right)^{2} + K_{57} \left( {B_{1,n} } \right)^{2} + K_{76} \left( {A_{5,0} } \right)^{2} + K_{81} A_{2,n} A_{1,n} + K_{115} B_{1,n} B_{2,n} + A_{5,0} K_{132} + K_{19} } \right)A_{1,0} \\ & \quad + K_{34} \left( {A_{3,0} } \right)^{3} + \left( {A_{5,0} K_{71} + K_{27} } \right)\left( {A_{3,0} } \right)^{2} + (K_{40} \left( {A_{1,n} } \right)^{2} + \left( {B_{1,n} } \right)^{2} K_{46} + K_{52} \left( {A_{2,n} } \right)^{2} + K_{58} \left( {B_{2,n} } \right)^{2} \\ & \quad + \left( {A_{5,0} } \right)^{2} K_{77} + K_{82} A_{2,n} A_{1,n} + K_{116} B_{2,n} B_{1,n} + K_{133} A_{5,0} + K_{20} ) A_{3,0} + K_{35} \left( {A_{3,0} } \right)^{3} + K_{28} \left( {A_{5,0} } \right)^{2} \\ & \quad + \left( {\left( {A_{1,n} } \right)^{2} K_{41} + K_{47} \left( {B_{1,n} } \right)^{2} + K_{53} \left( {A_{2,n} } \right)^{2} + K_{59} \left( {B_{2,n} } \right)^{2} + K_{83} A_{2,n} A_{1,n} + K_{21} } \right)A_{5,0} + \left( {A_{1,n} } \right)^{2} K_{22} \\ & \quad + \left( {B_{1,n} } \right)^{2} K_{23} + K_{24} \left( {A_{2,n} } \right)^{2} + \left( {B_{1,n} } \right)^{2} K_{25} + K_{79} A_{2,n} A_{1,n} + K_{116} B_{2,n} B_{1,n}, \\ \end{aligned}$$
(64)
$$\begin{aligned} & J_{33} \left( {A_{1,0} } \right)^{3} + (J_{64} \left( {A_{3,0} } \right)^{2} + A_{5,0} J_{65} + A_{3,0} K_{64} + J_{26} )\left( {A_{1,0} } \right)^{2}\\ &\quad + \left( {J_{70} \left( {A_{3,0} } \right)^{2} + J_{131} A_{5,0} + J_{130} A_{5,0} + \left( {A_{1,n} } \right)^{2} J_{39} } \right. \\ & \quad + \left. {J_{45} \left( {B_{1,n} } \right)^{2} + J_{51} \left( {A_{2,n} } \right)^{2} + J_{57} \left( {B_{1,n} } \right)^{2} + J_{76} \left( {A_{5,0} } \right)^{2} + J_{81} A_{2,n} A_{1,n} + J_{115} B_{1,n} B_{2,n} + A_{5,0} J_{132} } \right)A_{1,0} \\ & \quad + J_{34} \left( {A_{3,0} } \right)^{3} + \left( {A_{5,0} J_{71} + J_{27} } \right)\left( {A_{3,0} } \right)^{2} + (J_{40} \left( {A_{1,n} } \right)^{2} + \left( {B_{1,n} } \right)^{2} J_{46} + J_{52} \left( {A_{2,n} } \right)^{2} \\ & \quad + J_{58} \left( {B_{2,n} } \right)^{2} + \left( {A_{5,0} } \right)^{2} J_{77} + J_{82} A_{2,n} A_{1,n} + J_{116} B_{2,n} B_{1,n} + J_{133} A_{5,0} + J_{20} )A_{3,0} + J_{35} \left( {A_{3,0} } \right)^{3} \\ & \quad + J_{28} \left( {A_{5,0} } \right)^{2} + \left( {\left( {A_{1,n} } \right)^{2} J_{41} + J_{47} \left( {B_{1,n} } \right)^{2} + J_{53} \left( {A_{2,n} } \right)^{2} + J_{59} \left( {B_{2,n} } \right)^{2} + J_{83} A_{2,n} A_{1,n} + J_{21} } \right)A_{5,0} \\ & \quad + \left( {A_{1,n} } \right)^{2} J_{22} + \left( {B_{1,n} } \right)^{2} J_{23} + J_{24} \left( {A_{2,n} } \right)^{2} + \left( {B_{1,n} } \right)^{2} J_{25} + J_{79} A_{2,n} A_{1,n} + J_{114} B_{2,n} B_{1,n}, \\ \end{aligned}$$
(65)
$$\begin{aligned} & K_{33} \left( {A_{1,0} } \right)^{3} + (K_{64} \left( {A_{3,0} } \right)^{2} + \left. {\left( {A_{5,0} K_{65} + A_{3,0} K_{64} + K_{26} } \right)} \right)\left( {A_{1,0} } \right)^{2}\\ & \quad + \left( {K_{70} \left( {A_{3,0} } \right)^{2} + \left( {K_{131} A_{5,0} + K_{130} } \right)A_{5,0} + \left( {A_{1,n} } \right)^{2} K_{39} + K_{45} \left( {B_{1,n} } \right)^{2} } \right. \\ & \quad + \left. {K_{51} \left( {A_{2,n} } \right)^{2} + K_{57} \left( {B_{1,n} } \right)^{2} + K_{76} \left( {A_{5,0} } \right)^{2} + K_{81} A_{2,n} A_{1,n} + K_{115} B_{1,n} B_{2,n} + A_{5,0} K_{132} + K_{19} } \right)A_{1,0} \\ & \quad + K_{34} \left( {A_{3,0} } \right)^{3} + \left( {(A_{5,0} K_{71} + K_{27} } \right)\left( {A_{3,0} } \right)^{2} + (K_{40} \left( {A_{1,n} } \right)^{2} + \left( {B_{1,n} } \right)^{2} K_{46} + K_{52} \left( {A_{2,n} } \right)^{2} + K_{58} \left( {B_{2,n} } \right)^{2} \\ & \quad + \left( {A_{5,0} } \right)^{2} K_{77} + K_{82} A_{2,n} A_{1,n} + K_{116} B_{2,n} B_{1,n} + K_{133} A_{5,0} + K_{20} )A_{3,0} + K_{35} \left( {A_{3,0} } \right)^{3} + K_{28} \left( {A_{5,0} } \right)^{2} \\ & \quad + \left( {\left( {A_{1,n} } \right)^{2} K_{41} + K_{47} \left( {B_{1,n} } \right)^{2} + K_{53} \left( {A_{2,n} } \right)^{2} + K_{59} \left( {B_{2,n} } \right)^{2} + K_{83} A_{2,n} A_{1,n} + K_{21} } \right)A_{5,0} \\ & \quad + \left( {A_{1,n} } \right)^{2} K_{22} + \left( {B_{1,n} } \right)^{2} K_{23} + K_{24} \left( {A_{2,n} } \right)^{2} + \left( {B_{1,n} } \right)^{2} K_{25} + K_{79} A_{2,n} A_{1,n} + K_{116} B_{2,n} B_{1,n}. \\ \end{aligned}$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidi, H., Shahgholi, M., Hanzaki, A.R. et al. Nonlinear vibration, stability, and bifurcation of rotating axially moving conical shells. Acta Mech 233, 3175–3196 (2022). https://doi.org/10.1007/s00707-022-03255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03255-x

Navigation