Skip to main content
Log in

Bending analyses of piezoelectric-piezomagnetic bi-layered composite plates based on the modified strain gradient theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A size-dependent piezoelectric-piezomagnetic bi-layered composite plate bending model is established based on the modified strain gradient theory and layerwise theory, where the governing equations and corresponding definite solution conditions are firstly derived by the Hamilton variational principle. And then, the meshless collocation method coupled with the method of polynomial particular solutions is tentatively to solve this bending problem. Finally, the influences of size effect, applied coupling loads, structure dimension, and foundation parameters on the bending properties of piezoelectric-piezomagnetic bi-layered composite plates are systematically discussed by some typical numerical examples. Moreover, the bending analyses under different boundary conditions and proportions of component materials are further carried out, and some interesting conclusions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shindo, Y., Mori, K., Narita, F.: Electromagneto-mechanical fields of giant magnetostrictive/piezoelectric laminates. Acta Mech. 212(3–4), 253–261 (2010). https://doi.org/10.1007/s00707-009-0259-z

    Article  MATH  Google Scholar 

  2. Wu, C., Hu, G.: A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories. Acta Mech. 232(11), 4497–4531 (2021). https://doi.org/10.1007/s00707-021-03068-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, C., Chen, W., Li, J., Yang, J.: Two-dimensional analysis of magnetoelectric effects in multiferroic laminated plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 1046–1053 (2009). https://doi.org/10.1109/TUFFC.2009.1137

    Article  Google Scholar 

  4. Zhang, C.L., Yang, J.S., Chen, W.Q.: Magnetoelectric effects in multiferroic bilayers for coupled flexure and extension. J. Intell. Mater. Syst. Struct. 21(8), 851–855 (2010). https://doi.org/10.1177/1045389X10369717

    Article  Google Scholar 

  5. Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. 186, 105906 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105906

    Article  Google Scholar 

  6. Ojha, S., Nunes, W.C., Aimon, N.M., Ross, C.A.: Magnetostatic interactions in self-assembled CoxNi1−xFe2O4/BiFeO3 multiferroic nanocomposites. ACS Nano 10(8), 7657–7661 (2016). https://doi.org/10.1021/acsnano.6b02985

    Article  Google Scholar 

  7. Salehipour, H., Shahsavar, A.: A three dimensional elasticity model for free vibration analysis of functionally graded micro/nano plates: Modified strain gradient theory. Compos. Struct. 206, 415–424 (2018). https://doi.org/10.1016/j.compstruct.2018.08.033

    Article  Google Scholar 

  8. Zhang, C., Zhang, L., Shen, X., Chen, W.: Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J. Appl. Phys. 119, 134102 (2016). https://doi.org/10.1063/1.4945107

    Article  Google Scholar 

  9. Sun, L., Zhang, Z., Cao, C., Zhang, C.: Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer. J. Appl. Phys. 129, 244102 (2021). https://doi.org/10.1063/5.0050947

    Article  Google Scholar 

  10. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003). https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  11. Ghorbanpour-Arani, A., BabaAkbar-Zarei, H., Pourmousa, P., Eskandari, M.: Investigation of free vibration response of smart sandwich micro-beam on Winkler-Pasternak substrate exposed to multi physical fields. Microsyst. Technol. 24(7), 3045–3060 (2017). https://doi.org/10.1007/s00542-017-3681-5

    Article  Google Scholar 

  12. Jamalpoor, A, Ahmadi-Savadkoohi, A., Hosseini-Hashemi, S.: Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory. Smart Mater. Struct. 25(10), 105035 (2016). http://iopscience.iop.org/0964-1726/25/10/105035

  13. Mohammadimehr, M., Akhavan-Alavi, S.M., Okhravi, S.V., Edjtahed, S.H.: Free vibration analysis of micro-magneto-electro-elastic cylindrical sandwich panel considering functionally graded carbon nanotube–reinforced nanocomposite face sheets, various circuit boundary conditions, and temperature-dependent material properties using high-order sandwich panel theory and modified strain gradient theory. J. Intell. Mater. Syst. Struct. 29(5), 863–882 (2017). https://doi.org/10.1177/1045389X17721048

    Article  Google Scholar 

  14. Raissi, H., Shishehsaz, M., Moradi, S.: Stress distribution in a five-layer sandwich plate with FG face sheets using layerwise method. Mech. Adv. Mater. Struct. 26(14), 1234–1244 (2019). https://doi.org/10.1080/15376494.2018.1432796

    Article  Google Scholar 

  15. Thai, C.H., Ferreira, A.J.M., Carrera, E., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104, 196–214 (2013). https://doi.org/10.1016/j.compstruct.2013.04.002

    Article  Google Scholar 

  16. Yan, F., Feng, X.T., Zhou, H.: Dual reciprocity hybrid radial boundary node method for the analysis of Kirchhoff plates. Appl. Math. Model. 35(12), 5691–5706 (2011). https://doi.org/10.1016/j.apm.2011.05.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Y., Li, Y., Zhang, L., Zhang, H., Gao, Y.: Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta. Mech. 231(6), 2351–2368 (2020). https://doi.org/10.1007/s00707-020-02641-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, C.S., Lee, S., Huang, C.S.: Derivation of particular solutions using Chebyshev polynomial based functions. Int. J. Comp. Meth-Sing. 4(1), 15–32 (2001). https://doi.org/10.1142/S0219876207001096

    Article  MathSciNet  MATH  Google Scholar 

  19. Vaghefi, R., Nayebi, A., Hematiyan, M.R.: Investigating the effects of cooling rate and casting speed on continuous casting process using a 3D thermo-mechanical meshless approach. Acta. Mech. 229(11), 4375–4392 (2018). https://doi.org/10.1007/s00707-018-2240-1

    Article  MathSciNet  Google Scholar 

  20. Kwak, S., Kim, K., Jong, G., Cha, J., Juhyok, U.: A meshfree approach for free vibration analysis of ply drop-off laminated conical, cylindrical shells and annular plates. Acta. Mech. 232(12), 4775–4800 (2021). https://doi.org/10.1007/s00707-021-03084-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, A.H.D.: Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions. Eng. Anal. Bound. Elem. 24(7), 531–538 (2000). https://doi.org/10.1016/S0955-7997(00)00033-3

    Article  MATH  Google Scholar 

  22. Khatri-Ghimire, B., Tian, H.Y., Lamichhane, A.R.: Numerical solutions of elliptic partial differential equations using Chebyshev polynomials. Comput. Math. Appl. 72(4), 1042–1054 (2016). https://doi.org/10.1016/j.camwa.2016.06.012

    Article  MathSciNet  MATH  Google Scholar 

  23. Dangal, T., Chen, C.S., Lin, J.: Polynomial particular solutions for solving elliptic partial differential equations. Comput. Math. Appl. 73(1), 60–70 (2017). https://doi.org/10.1016/j.camwa.2016.10.024

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, J., Chen, C.S., Wang, F.J., Dangal, T.: Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems. Appl. Math. Model. 49, 452–469 (2017). https://doi.org/10.1016/j.apm.2017.05.012

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng, W.J., Yan, Z., Lin, J., Zhang, C.Z.: Bending analysis of magnetoelectroelastic nanoplates resting on Pasternak elastic foundation based on nonlocal theory. Appl. Math. Mech. 41(12), 1769–1786 (2020). https://doi.org/10.1007/s10483-020-2679-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Choi, J.H., Kim, H., Kim, J.Y., Lim, K.H., Lee, B.C., Sim, G.D.: Micro-cantilever bending tests for understanding size effect in gradient elasticity. Mater. Des. 214(12), 110398 (2022). https://doi.org/10.1016/j.matdes.2022.110398

    Article  Google Scholar 

  27. Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C., Rodrigues, J.D.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Compos. Struct. 86(4), 328–343 (2008). https://doi.org/10.1016/j.compstruct.2008.07.025

    Article  Google Scholar 

  28. Ferreira, A.J.M.: Analysis of composite plates using a layerwise theory and multiquadrics discretization. Mech. Adv. Mater. Struc. 12(2), 99–112 (2005). https://doi.org/10.1080/15376490490493952

    Article  Google Scholar 

  29. Li, Y.S., Feng, W.J., Cai, Z.Y.: Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory. Compos. Struct. 115(1), 41–50 (2014). https://doi.org/10.1016/j.compstruct.2014.04.005

    Article  Google Scholar 

  30. Hajmohammad, M.H., Zarei, M.S., Sepehr, M., Abtahi, N.: Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM. Aerosp. Sci. Technol. 79, 679–688 (2018). https://doi.org/10.1016/j.ast.2018.05.055

    Article  Google Scholar 

  31. Arefi, M., Zenkour, M.A.: Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets. Compos. Struct. 159, 479–490 (2016). https://doi.org/10.1016/j.compstruct.2016.09.088

    Article  Google Scholar 

  32. Jamalpoor, A., Hosseini, M.: Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos. Part B-Eng. 75, 53–64 (2015). https://doi.org/10.1016/j.compositesb.2015.01.026

    Article  Google Scholar 

  33. Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N., Kansa, E.J.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations. Eng. Anal. Bound. Elem. 29(12), 1104–1114 (2005). https://doi.org/10.1016/j.enganabound.2005.07.004

    Article  MATH  Google Scholar 

  34. Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos. Struct. 111(1), 522–529 (2014). https://doi.org/10.1016/j.compstruct.2014.01.033

    Article  Google Scholar 

  35. Arefi, M., Zenkour, A.M.: Vibration and bending analyses of magneto–electro–thermo-elastic sandwich microplates resting on viscoelastic foundation. Appl. Phys. A-Mater. 123(8), 1–17 (2014). https://doi.org/10.1007/s00339-017-1156-2

    Article  Google Scholar 

  36. Ke, L.L., Liu, C., Wang, Y.S.: Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions. Physica E 1, 93–106 (2015). https://doi.org/10.1016/j.physe.2014.10.002

    Article  Google Scholar 

  37. Pandey, S., Pradyumna, S.: A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells. Compos. Struct. 133, 438–450 (2015). https://doi.org/10.1016/j.compstruct.2015.07.087

    Article  MATH  Google Scholar 

  38. Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68(4), 608–618 (2001). https://doi.org/10.1115/1.1380385

    Article  MATH  Google Scholar 

  39. Karamanli, A., Vo, T.P.: Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Compos. Struct. 246, 112401 (2020). https://doi.org/10.1016/j.compstruct.2020.112401

    Article  Google Scholar 

  40. Mohammadimehr, M., Salemi, M.: Bending and buckling analysis of functionally graded Mindlin nano-plate model based on strain gradient elasticity theory. Indian J. Sci. Res. 2(2), 587–594 (2014)

    Google Scholar 

  41. Islam, R., Priya, S.: Magnetoelectric properties of the lead-free cofired BaTiO3-(Ni0.8Zn0.2)Fe2O4 bilayer composite. Appl. Phys. Lett. 89, 152911 (2006). https://doi.org/10.1063/1.2361180

    Article  Google Scholar 

  42. Torres, D.A.F., Mendonça, P.D.T.R.: HSDT-layerwise analytical solution for rectangular piezoelectric laminated plates. Compos. Struct. 92(8), 1763–1774 (2010). https://doi.org/10.1016/j.compstruct.2010.02.007

    Article  Google Scholar 

  43. Thai, H.T., Vo, T.P., Nguyen, T.K., Lee, J.: Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Compos. Struct. 123, 337–349 (2015). https://doi.org/10.1016/j.compstruct.2014.11.065

    Article  Google Scholar 

  44. Pavan, G.S., Nanjunda-Rao, K.S.: Bending analysis of laminated composite plates using isogeometric collocation method. Compos. Struct. 176, 715–728 (2017). https://doi.org/10.1016/j.compstruct.2017.04.073

    Article  Google Scholar 

  45. Park, M., Choi, D.H.: A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates. Appl. Math. Model. 61(1), 49–71 (2018). https://doi.org/10.1016/j.apm.2018.03.036

    Article  MathSciNet  MATH  Google Scholar 

  46. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007). https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  47. Hosseini-Hashemi, S., Arsanjani, M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plate. Int. J. Solids Struct. 42(3–4), 819–853 (2005). https://doi.org/10.1016/j.ijsolstr.2004.06.063

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11872257 and 11572358), Key Project of Natural Science Foundation of Hebei Province (No. A2020210008), and the German Research Foundation (DFG, Project No. ZH 15/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Yan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The detailed expressions of \({{\varvec{\upvarepsilon}}}^{\left( n \right)}\), \({{\varvec{\upeta}}}^{\left( n \right)}\), \({{\varvec{\upgamma}}}^{\left( n \right)}\), and \({{\varvec{\upchi}}}^{\left( n \right)}\) are given as follows:

$$ \left\{ \begin{gathered} \varepsilon_{11}^{\left( n \right)} = \frac{\partial u}{{\partial x_{1} }} + \beta_{{}}^{\left( n \right)} \frac{{\partial \psi_{1}^{\left( n \right)} }}{{\partial x_{1} }},\;\varepsilon_{22}^{\left( n \right)} = \frac{\partial v}{{\partial x_{2} }} + \beta_{{}}^{\left( n \right)} \frac{{\partial \psi_{2}^{\left( n \right)} }}{{\partial x_{2} }} , \hfill \\ \varepsilon_{23}^{\left( n \right)} = \frac{1}{2}\left( {\psi_{2}^{\left( n \right)} + \frac{\partial w}{{\partial x_{2} }}} \right),\varepsilon_{31}^{\left( n \right)} = \frac{1}{2}\left( {\psi_{1}^{\left( n \right)} + \frac{\partial w}{{\partial x_{1} }}} \right),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \varepsilon_{12}^{\left( n \right)} = \frac{1}{2}\left[ {\frac{\partial u}{{\partial x_{2} }} + \frac{\partial v}{{\partial x_{1} }} + \beta_{{}}^{\left( n \right)} \left( {\frac{{\partial \psi_{1}^{\left( n \right)} }}{{\partial x_{2} }} + \frac{{\partial \psi_{2}^{\left( n \right)} }}{{\partial x_{1} }}} \right)} \right] , \hfill \\ \end{gathered} \right. $$
(19)
$$ \left\{ {\begin{array}{*{20}l} {\;\eta _{{111}}^{{\left( n \right)}} = \frac{2}{5}\left[ {\frac{{\partial ^{2} u}}{{\partial x_{1}^{2} }} - \frac{{\partial ^{2} v}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} - 2\frac{{\partial ^{2} u}}{{\partial x_{2}^{2} }} + \beta _{{}}^{{\left( n \right)}} \left( {\frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1}^{2} }} - \frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{1} \partial x_{2} }} - 2\frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{2}^{2} }}} \right)} \right]} , \hfill \\ {\;\eta _{{222}}^{{\left( n \right)}} = \frac{2}{5}\left[ {\frac{{\partial ^{2} v}}{{\partial x_{2}^{2} }} - \frac{{\partial ^{2} u}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} - 2\frac{{\partial ^{2} v}}{{\partial x_{1}^{2} }} + \beta _{{}}^{{\left( n \right)}} \left( {\frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{2}^{2} }} - \frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1} \partial x_{2} }} - 2\frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{1}^{2} }}} \right)} \right]} , \hfill \\ {\;\eta _{{333}}^{{\left( n \right)}} = - \frac{1}{5}\left( {2\frac{{\partial \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1} }} + \frac{{\partial \psi _{2}^{{\left( n \right)}} }}{{\partial x_{2} }} + \frac{{\partial ^{2} w}}{{\partial x_{1}^{2} }} + \frac{{\partial ^{2} w}}{{\partial x_{2}^{2} }}} \right)} , \hfill \\ \begin{gathered} \eta _{{112}}^{{\left( n \right)}} = \frac{1}{{15}}\left[ {8\frac{{\partial ^{2} u}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} + 4\frac{{\partial ^{2} v}}{{\partial x_{1}^{2} }} - 3\frac{{\partial ^{2} v}}{{\partial x_{2}^{2} }} + \beta _{{}}^{{\left( n \right)}} \left( {8\frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1} \partial x_{2} }} + 4\frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{1}^{2} }} - 3\frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{2}^{2} }}} \right)} \right] , \\ \eta _{{221}}^{{\left( n \right)}} = \frac{1}{{15}}\left[ {8\frac{{\partial ^{2} v}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} + 4\frac{{\partial ^{2} u}}{{\partial x_{2}^{2} }} - 3\frac{{\partial ^{2} u}}{{\partial x_{1}^{2} }} + \beta _{{}}^{{\left( n \right)}} \left( {8\frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{1} \partial x_{2} }} + 4\frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{2}^{2} }} - 3\frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1}^{2} }}} \right)} \right] , \\ \eta _{{332}}^{{\left( n \right)}} = - \frac{1}{{15}}\left[ {2\frac{{\partial ^{2} u}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} + 3\frac{{\partial ^{2} v}}{{\partial x_{2}^{2} }} + \frac{{\partial ^{2} v}}{{\partial x_{2}^{2} }} + \beta _{{}}^{{\left( n \right)}} \left( {2\frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1} \partial x_{2} }} + 3\frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{2}^{2} }} + \frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{1}^{2} }}} \right)} \right] , \\ \eta _{{331}}^{{\left( n \right)}} = - \frac{1}{{15}}\left[ {2\frac{{\partial ^{2} v}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} + 3\frac{{\partial ^{2} u}}{{\partial x_{1}^{2} }} + \frac{{\partial ^{2} u}}{{\partial x_{1}^{2} }} + \beta _{{}}^{{\left( n \right)}} \left( {2\frac{{\partial ^{2} \psi _{2}^{{\left( n \right)}} }}{{\partial x_{1} \partial x_{2} }} + 3\frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1}^{2} }} + \frac{{\partial ^{2} \psi _{1}^{{\left( n \right)}} }}{{\partial x_{2}^{2} }}} \right)} \right] , \\ \eta _{{113}}^{{\left( n \right)}} = \frac{1}{{15}}\left( {8\frac{{\partial \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1} }} + 4\frac{{\partial ^{2} w}}{{\partial x_{1}^{2} }} - \frac{{\partial ^{2} w}}{{\partial x_{2}^{2} }} - 2\frac{{\partial \psi _{2}^{{\left( n \right)}} }}{{\partial x_{2} }}} \right) , \\ \eta _{{223}}^{{\left( n \right)}} = \frac{1}{{15}}\left( {8\frac{{\partial \psi _{2}^{{\left( n \right)}} }}{{\partial x_{2} }} + 4\frac{{\partial ^{2} w}}{{\partial x_{2}^{2} }} - \frac{{\partial ^{2} w}}{{\partial x_{1}^{2} }} - 2\frac{{\partial \psi _{1}^{{\left( n \right)}} }}{{\partial x_{1} }}} \right) , \\ \eta _{{123}}^{{\left( n \right)}} = \eta _{{132}}^{{\left( n \right)}} = \eta _{{213}}^{{\left( n \right)}} = \eta _{{231}}^{{\left( n \right)}} = \eta _{{312}}^{{\left( n \right)}} = \eta _{{321}}^{{\left( n \right)}} = \frac{1}{3}\left( {\frac{{\partial \psi _{1}^{{\left( n \right)}} }}{{\partial x_{2} }} + \frac{{\partial ^{2} w}}{{\partial x_{1} \partial x_{2} }} + \frac{{\partial \psi _{2}^{{\left( n \right)}} }}{{\partial x_{1} }}} \right) , \\ \eta _{{212}}^{{\left( n \right)}} = \eta _{{122}}^{{\left( n \right)}} = \eta _{{221}}^{{\left( n \right)}} ,\;\eta _{{121}}^{{\left( n \right)}} = \eta _{{211}}^{{\left( n \right)}} = \eta _{{112}}^{{\left( n \right)}} ,\;\eta _{{233}}^{{\left( n \right)}} = \eta _{{332}}^{{\left( n \right)}} = \eta _{{323}}^{{\left( n \right)}},\;\eta _{{313}}^{{\left( n \right)}} = \eta _{{133}}^{{\left( n \right)}} = \eta _{{331}}^{{\left( n \right)}} , \\ \;\eta _{{223}}^{{\left( n \right)}} = \eta _{{232}}^{{\left( n \right)}} = \eta _{{322}}^{{\left( n \right)}} ,\;\eta _{{113}}^{{\left( n \right)}} = \eta _{{131}}^{{\left( n \right)}} = \eta _{{311}}^{{\left( n \right)}} \;, \\ \end{gathered} \hfill \\ \end{array} } \right. $$
(20)
$$ \left\{ \begin{gathered} \gamma_{1}^{\left( n \right)} = \frac{{\partial^{2} u}}{{\partial x_{1}^{2} }} + \frac{{\partial^{2} v}}{{\partial x_{1} \partial x_{2} }} + \beta^{\left( n \right)} \left( {\frac{{\partial^{2} \psi_{1}^{\left( n \right)} }}{{\partial x_{1}^{2} }} + \frac{{\partial^{2} \psi_{2}^{\left( n \right)} }}{{\partial x_{1} \partial x_{2} }}} \right)\;, \, \hfill \\ \gamma_{2}^{\left( n \right)} = \frac{{\partial^{2} u}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} + \frac{{\partial^{2} v}}{{\partial x_{2}^{2} }} + \beta^{\left( n \right)} \left( {\frac{{\partial^{2} \psi_{2}^{\left( n \right)} }}{{\partial x_{2}^{2} }}{ + }\frac{{\partial^{2} \psi_{1}^{\left( n \right)} }}{{\partial x_{1} \partial x_{2} }}} \right),\;\gamma_{3}^{\left( n \right)} = \frac{{\partial \psi_{1}^{\left( n \right)} }}{{\partial x_{1} }} + \frac{{\partial \psi_{2}^{\left( n \right)} }}{{\partial x_{2} }} , \, \hfill \\ \end{gathered} \right. $$
(21)
$$ \left\{ {\begin{array}{*{20}l} {\chi_{11}^{\left( n \right)} = \frac{1}{2}\left( {\frac{{\partial^{2} w}}{{\partial x_{1} \partial x_{2} }} - \frac{{\partial \psi_{2}^{\left( n \right)} }}{{\partial x_{1} }}} \right), \, \chi_{22}^{\left( n \right)} = \frac{1}{2}\left( {\frac{{\partial \psi_{1}^{\left( n \right)} }}{{\partial x_{2} }} - \frac{{\partial^{2} w}}{{\partial x_{1} \partial x_{2} }}} \right), \, \chi_{33}^{\left( n \right)} = \frac{1}{2}\left( {\frac{{\partial \psi_{2}^{\left( n \right)} }}{{\partial x_{1} }} - \frac{{\partial \psi_{1}^{\left( n \right)} }}{{\partial x_{2} }}} \right)} , \hfill \\ \begin{gathered} \chi_{23}^{\left( n \right)} = \frac{1}{4}\left[ {\frac{{\partial^{2} v}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} - \frac{{\partial^{2} u}}{{\partial x_{2}^{2} }} + \beta^{\left( n \right)} \left( {\frac{{\partial^{2} \psi_{2}^{\left( n \right)} }}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }} - \frac{{\partial^{2} \psi_{1}^{\left( n \right)} }}{{\partial x_{2}^{2} }}} \right)} \right], \, \chi_{31}^{\left( n \right)} = \frac{1}{4}\left[ {\frac{{\partial^{2} v}}{{\partial x_{1}^{2} }} - \frac{{\partial^{2} u}}{{\partial x_{1} \partial x_{2} }} + \beta^{\left( n \right)} \left( {\frac{{\partial^{2} \psi_{2}^{\left( n \right)} }}{{\partial x_{1}^{2} }} - \frac{{\partial^{2} \psi_{1}^{\left( n \right)} }}{{\partial x_{1} \partial x_{2} }}} \right)} \right] , \hfill \\ \chi_{12}^{\left( n \right)} = \frac{1}{4}\left( {\frac{{\partial^{2} w}}{{\partial x_{2}^{2} }} - \frac{{\partial^{2} w}}{{\partial x_{1}^{2} }} + \frac{{\partial \psi_{1}^{\left( n \right)} }}{{\partial x_{1} }} - \frac{{\partial \psi_{2}^{\left( n \right)} }}{{\partial x_{2} }}} \right). \hfill \\ \end{gathered} \hfill \\ \end{array} } \right. $$
(22)

Appendix B

The parameters of the boundary conditions in Eq. (12) can be shown as

$$ \begin{aligned} f_{{b_{1}^{1} }} & = \sum\limits_{{n = 1}}^{2} {\left\{ {\left( {\bar{N}_{{11}}^{{\left( n \right)}} } \right.} \right. - \bar{P}_{{1,1}}^{{\left( n \right)}} - 0.5\bar{P}_{{2,2}}^{{\left( n \right)}} - a_{{i1}} \bar{T}_{{i1,1}}^{{\left( n \right)}} - 0.5a_{{i3}} \bar{T}_{{i2,2}}^{{\left( n \right)}} + \left. {0.25\bar{M}_{{13,2}}^{{\left( n \right)}} } \right)} \tau _{1} \\ & + \left. {\left[ {\bar{N}_{{12}}^{{\left( n \right)}} - 0.5\bar{P}_{{2,1}}^{{\left( n \right)}} - 0.5a_{{i3}}^{{}} \bar{T}_{{i2,1}}^{{\left( n \right)}} - a_{{i2}} \bar{T}_{{i1,2}}^{{\left( n \right)}} + 0.25\left( {\bar{M}_{{13,1}}^{{\left( n \right)}} + 2\bar{M}_{{23,2}}^{{\left( n \right)}} } \right)} \right]\tau _{2} } \right\} , \\ \end{aligned} $$
(23)
$$ \begin{aligned} f_{{b_{2}^{1} }} & = \sum\limits_{{n = 1}}^{2} {\left\{ {\left[ {\bar{N}_{{12}}^{{\left( n \right)}} } \right.} \right.} - 0.5\bar{P}_{{1,2}}^{{\left( n \right)}} - \tilde{a}_{{i1}} \bar{T}_{{i2,1}}^{{\left( n \right)}} - 0.5\tilde{a}_{{i3}} \bar{T}_{{i1,2}}^{{\left( n \right)}} - 0.25\left. {\left( {2\bar{M}_{{13,1}}^{{\left( n \right)}} + \bar{M}_{{23,2}}^{{\left( n \right)}} } \right)} \right]\tau _{1} \\ & + \left( {\bar{N}_{{22}}^{{\left( n \right)}} } \right. - 0.5\bar{P}_{{1,1}}^{{\left( n \right)}} - \bar{P}_{{2,2}}^{{\left( n \right)}} - 0.5\tilde{a}_{{i3}} \bar{T}_{{i1,1}}^{{\left( n \right)}} - 0.5\tilde{a}_{{i2}} \bar{T}_{{i2,2}}^{{\left( n \right)}} - \left. {0.25\left. {\bar{M}_{{23,1}}^{{\left( n \right)}} } \right)\tau _{2} } \right\} , \\ \end{aligned} $$
(24)
$$ \begin{aligned} f_{{b_{3}^{1} }} & = \sum\limits_{{n = 1}}^{2} {\left\{ {\left[ {\bar{N}_{{13}}^{{\left( n \right)}} } \right.} \right.} - \tilde{a}_{{i1}} \bar{T}_{{i3}}^{{\left( n \right)}} - \bar{T}_{{14,2}}^{{\left( n \right)}} - 0.25\left. {\left( {\bar{M}_{{11,2}}^{{\left( n \right)}} - 2\bar{M}_{{12,1}}^{{\left( n \right)}} - \bar{M}_{{22,2}}^{{\left( n \right)}} } \right)} \right]\tau _{1} \\ & + \quad \left[ {\bar{N}_{{23}}^{{\left( n \right)}} } \right. + a_{{i2}} \bar{T}_{{i3,2}}^{{\left( n \right)}} - \bar{T}_{{14,1}}^{{\left( n \right)}} - 0.25\left. {\left. {\left( {\bar{M}_{{22,1}}^{{\left( n \right)}} + \bar{M}_{{11,1}}^{{\left( n \right)}} + 2\bar{M}_{{21,2}}^{{\left( n \right)}} } \right)} \right]\tau _{2} } \right\} , \\ \end{aligned} $$
(25)
$$ f_{{b_{4}^{1} }}^{{}} = f_{{b_{4}^{1} }}^{\left( 1 \right)} ,\;f_{{b_{5}^{1} }}^{{}} = f_{{b_{5}^{1} }}^{\left( 1 \right)} ,f_{{b_{6}^{1} }}^{{}} = f_{{b_{4}^{1} }}^{\left( 2 \right)} ,\;f_{{b_{7}^{1} }}^{{}} = f_{{b_{5}^{1} }}^{\left( 2 \right)} ,\;f_{{b_{8}^{1} }}^{{}} = f_{{b_{8}^{1} }}^{\left( 1 \right)} ,\;f_{{b_{9}^{1} }}^{{}} = f_{{b_{8}^{1} }}^{\left( 2 \right)} , $$
(26)
$$ \begin{gathered} f_{{b_{4}^{1} }}^{\left( n \right)} = \left[ {N_{11}^{\left( n \right)} - b_{{\tilde{i}1}} P_{{\tilde{i},1}}^{\left( n \right)} + \overline{P}_{3}^{{}} - a_{i1} T_{i1,1}^{\left( n \right)} - 0.5a_{i3} T_{i2,2}^{\left( n \right)} - a_{i4} \overline{T}_{i3}^{{}} + 0.25\left( {\overline{M}_{13,2}^{\left( n \right)} + 2\overline{M}_{12}^{\left( n \right)} } \right)} \right]\tau_{1} \\ +\left[ {N_{12}^{\left( n \right)} - 0.5P_{2,1}^{\left( n \right)} - 0.5a_{i3} T_{i2,1}^{\left( n \right)} - a_{i2} T_{i1,2}^{\left( n \right)} + {\kern 1pt} {\kern 1pt} 2\overline{T}_{14}^{\left( n \right)} + 0.25\left( {M_{13,1}^{\left( n \right)} + 2M_{23,2}^{\left( n \right)} + 2\overline{M}_{22}^{\left( n \right)} - 2\overline{M}_{33}^{\left( n \right)} } \right)} \right]\tau_{2} , \\ \end{gathered} $$
(27)
$$ \begin{gathered} f_{{b_{5}^{1} }}^{\left( n \right)} = \left[ {N_{12}^{\left( n \right)} } \right. - 0.5P_{1,2}^{\left( n \right)} - 0.5\tilde{a}_{i3} T_{i1,2}^{\left( n \right)} - \tilde{a}_{i1} T_{i2,1}^{\left( n \right)} {\kern 1pt} + 2\overline{T}_{14}^{\left( n \right)} - 0.25\left. {\left( {M_{23,2}^{\left( n \right)} + {\kern 1pt} 2M_{13,1}^{\left( n \right)} + 2\overline{M}_{11}^{\left( n \right)} - 2\overline{M}_{33}^{\left( n \right)} } \right)} \right] \\ {\kern 1pt} \tau_{1} {\kern 1pt} + {\kern 1pt} \left[ {N_{22}^{\left( n \right)} } \right. + \overline{P}_{3}^{\left( n \right)} - 0.5P_{1,1}^{\left( n \right)} - P_{2,2}^{\left( n \right)} - 0.5\tilde{a}_{i3} T_{i1,1}^{\left( n \right)} - \tilde{a}_{i2} T_{i2,2}^{\left( n \right)} - \tilde{a}_{i4} \overline{T}_{i3}^{\left( n \right)} - \left. {0.25\left( {2\overline{M}_{12}^{\left( n \right)} + M_{23,1}^{\left( n \right)} } \right)} \right]{\kern 1pt} {\kern 1pt} {\kern 1pt} \tau_{2} , \\ \end{gathered} $$
(28)
$$ f_{{b_{8}^{1} }}^{\left( n \right)} = Q_{1}^{\left( n \right)} \tau_{1} + Q_{2}^{\left( n \right)} \tau_{2} , $$
(29)
$$ \, f_{{b_{1}^{2} }} = \sum\limits_{n = 1}^{2} {\left[ {\left( {\left. {a_{i1} \overline{T}_{i1}^{\left( n \right)} + \overline{P}_{1}^{\left( n \right)} } \right)\tau_{1} + 0.25\left( {2\overline{P}_{2}^{\left( n \right)} + 2a_{i3} \overline{T}_{i2}^{\left( n \right)} - \left. {\overline{M}_{13}^{\left( n \right)} } \right)} \right.\tau_{2} } \right.} \right]} , $$
(30)
$$ f_{{b_{2}^{2} }} = 0.25\sum\limits_{n = 1}^{2} {\left[ {\left( {{\kern 1pt} 4\tilde{a}_{i1} \overline{T}_{i2}^{\left( n \right)} + 2\overline{M}_{13}^{\left( n \right)} } \right)\tau_{1} + \left( {2\overline{P}_{1}^{\left( n \right)} } \right. + 2\tilde{a}_{i3} \overline{T}_{i1}^{\left( n \right)} + \left. {\overline{M}_{23}^{\left( n \right)} } \right)\tau_{2} } \right]} , $$
(31)
$$ f_{{b_{3}^{2} }} = {\kern 1pt} 0.25\sum\limits_{n = 1}^{2} {\left[ {\left( {4\tilde{a}_{i1} \overline{T}_{i3}^{\left( n \right)} } \right. - 2\left. {\overline{M}_{12}^{\left( n \right)} } \right)\tau_{1} + {\kern 1pt} \left( {2\overline{T}_{14}^{\left( n \right)} + \overline{M}_{11}^{\left( n \right)} - \overline{M}_{22}^{\left( n \right)} } \right)\tau_{2} } \right]} , $$
(32)
$$ f_{{b_{4}^{2} }}^{{}} = f_{{b_{4}^{2} }}^{\left( 1 \right)} ,\;f_{{b_{5}^{2} }}^{{}} = f_{{b_{5}^{2} }}^{\left( 1 \right)} ,\;f_{{b_{6}^{2} }}^{{}} = f_{{b_{4}^{2} }}^{\left( 2 \right)} ,\;f_{{b_{7}^{2} }}^{{}} = f_{{b_{5}^{2} }}^{\left( 2 \right)} , $$
(33)
$$ f_{{b_{4}^{2} }}^{\left( n \right)} = \left( {P_{1}^{\left( n \right)} {\kern 1pt} + a_{i1} T_{i1}^{\left( n \right)} } \right)\tau_{1} + 0.25\left( {{\kern 1pt} 2P_{2}^{\left( n \right)} } \right. + 2a_{i3} T_{i2}^{\left( n \right)} - {\kern 1pt} \left. {M_{13}^{\left( n \right)} } \right)\tau_{2}, $$
(34)
$$ f_{{b_{5}^{2} }}^{\left( n \right)} = \left( {\tilde{a}_{i1} T_{i2}^{\left( n \right)} + 0.5M_{13}^{\left( n \right)} {\kern 1pt} } \right)\tau_{1} {\kern 1pt} + {\kern 1pt} {\kern 1pt} 0.25\left( {2P_{1}^{\left( n \right)} } \right. + 2\tilde{a}_{i3} T_{i1}^{\left( n \right)} + \left. {M_{23}^{\left( n \right)} {\kern 1pt} } \right)\tau_{2} , $$
(35)
$$ f_{{b_{1}^{3} }} = 0.25\sum\limits_{n = 1}^{2} {\left[ {\left( {2\overline{P}_{2}^{\left( n \right)} } \right. + 2a_{i3}^{{}} \overline{T}_{i2}^{\left( n \right)} - \left. {\overline{M}_{13}^{\left( n \right)} } \right)\tau_{1} + {\kern 1pt} {\kern 1pt} 2\left( {a_{i2} \overline{T}_{i1}^{\left( n \right)} \left. { - \overline{M}_{23}^{\left( n \right)} } \right)\tau_{2} } \right.} \right]} , $$
(36)
$$ f_{{b_{2}^{3} }} = 0.25\sum\limits_{n = 1}^{2} {\left[ {\left( {2\overline{P}_{1}^{\left( n \right)} - 2\tilde{a}_{i3} \overline{T}_{i1}^{\left( n \right)} + \overline{M}_{23}^{\left( n \right)} } \right)\tau_{1} + {\kern 1pt} 2\left( {2\overline{P}_{2}^{\left( n \right)} + \tilde{a}_{i2} \overline{T}_{i2}^{\left( n \right)} } \right)\tau_{2} } \right]} , $$
(37)
$$ f_{{b_{3}^{3} }} = 0.25\sum\limits_{n = 1}^{2} {\left[ {\left( {4\overline{T}_{14}^{\left( n \right)} + {\kern 1pt} \overline{M}_{11}^{\left( n \right)} - \overline{M}_{22}^{\left( n \right)} } \right)\tau_{1} + 2\left( {{\kern 1pt} 2a_{i2} \overline{T}_{i3}^{\left( n \right)} + \overline{M}_{12}^{\left( n \right)} } \right)\tau_{2} } \right]} , $$
(38)
$$ f_{{b_{4}^{3} }}^{{}} = f_{{b_{4}^{3} }}^{\left( 1 \right)} ,\;f_{{b_{5}^{3} }}^{{}} = f_{{b_{5}^{3} }}^{\left( 1 \right)} ,\;f_{{b_{6}^{3} }}^{{}} = f_{{b_{4}^{3} }}^{\left( 2 \right)} ,\;f_{{b_{7}^{3} }}^{{}} = f_{{b_{5}^{3} }}^{\left( 2 \right)} , $$
(39)
$$ f_{{b_{4}^{3} }}^{\left( n \right)} = 0.25\left( {2P_{2}^{\left( n \right)} } \right. + 2a_{i3} T_{i2}^{\left( n \right)} - \left. {M_{13}^{\left( n \right)} } \right)\tau_{1} + {\kern 1pt} {\kern 1pt} \left( {a_{i2} T_{i1}^{\left( n \right)} - 0.5M_{23}^{\left( n \right)} {\kern 1pt} } \right)\tau_{2} , $$
(40)
$$ f_{{b_{5}^{3} }}^{\left( n \right)} = 0.25\left( {2P_{1}^{\left( n \right)} + 2\tilde{a}_{i3} T_{i1}^{\left( n \right)} - M_{23}^{\left( n \right)} } \right)\tau_{1} {\kern 1pt} + {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {P_{2}^{\left( n \right)} + 0.5\tilde{a}_{i2} T_{i2}^{\left( n \right)} } \right)\tau_{2} , $$
(41)

where \(\tau_{i} \;\left( {i = 1,2} \right)\) denote the direction cosines of the unit vector normal to the boundary of the middle plane.

Appendix C

In Eq. (15), the partial differential operator \({\mathbb{Z}}_{IJ}\) can be written as

$$ {\mathbb{Z}}_{IJ} = \sum\limits_{{\hat{n} = 0}}^{4} {\sum\limits_{{\hat{k} = 0}}^{{4 - \hat{n}}} {\left( {{\text{A}}_{{IJ\hat{n}\hat{k}}} \frac{{\partial^{{\hat{n} + \hat{k}}} }}{{\partial \overline{x}_{1}^{{\hat{n}}} \partial \overline{x}_{2}^{{\hat{k}}} }}} \right)} } ;\quad \left( {0 \le \hat{n} + \hat{k} \le 4;\;I,\;J = 1,\;2,\; \cdots ,9} \right) $$
(42)

where \(\hat{n},\;\hat{k}\) denote the derivation order to \(\overline{x}_{1} ,\;\overline{x}_{2}\). In our model, the nonzero coefficients \({\text{A}}_{{IJ\hat{n}\hat{k}}}\) can be expressed as

$$ \begin{gathered} {\text{A}}_{1120} = - \sum\limits_{n = 1}^{2} {\overline{c}_{11}^{\left( n \right)} \theta^{\left( n \right)} } \lambda ,\;{\text{A}}_{1140} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1140} } {\mathbf{l}}^{\left( n \right)} \theta^{\left( n \right)} \lambda^{3} ,{\text{A}}_{1104} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1104} } {\mathbf{l}}^{\left( n \right)} \theta^{\left( n \right)} \lambda^{3} \eta^{4}, \hfill \\ {\text{A}}_{1102} = - \sum\limits_{n = 1}^{2} {\overline{c}_{66}^{\left( n \right)} \theta^{\left( n \right)} } \lambda \eta^{2} ,\;{\text{A}}_{1122} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1122} } {\mathbf{l}}^{\left( n \right)} \theta^{\left( n \right)} \lambda^{3} \eta^{2} ,{\text{A}}_{1211} = - \sum\limits_{n = 1}^{2} {\left( {\overline{c}_{12}^{\left( n \right)} \theta^{\left( n \right)} + \overline{c}_{66}^{\left( n \right)} \theta^{\left( n \right)} } \right)\lambda \eta } , \hfill \\ \end{gathered} $$
$$ {\text{A}}_{1213} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1213} {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} } \lambda^{3} \eta^{3} ,\;{\text{A}}_{1231} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1213} {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} } \lambda^{3} \eta ,{\text{A}}_{1420} = - 0.5\overline{c}_{11}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{2} , $$
$$ \begin{gathered} {\text{A}}_{1402} = - 0.5\overline{c}_{66}^{\left( 1 \right)} \lambda^{2} \eta^{2} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} ,\;{\text{A}}_{1440} = {\mathbf{a}}_{1440} {\mathbf{l}}^{\left( 1 \right)} \lambda^{4} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \;{\text{A}}_{1404} = {\mathbf{a}}_{1404} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta^{4}, \hfill \\ {\text{A}}_{1422} = {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta^{2} ,{\text{A}}_{1511} = - 0.5\left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)\left( {\theta^{\left( 1 \right)} } \right)^{2} \lambda^{2} \eta ,\;{\text{A}}_{1513} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta^{3} , \hfill \\ \end{gathered} $$
$$ \begin{gathered} {\text{A}}_{1531} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta ,{\text{A}}_{1620} = 0.5\overline{c}_{11}^{\left( 2 \right)} \left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{2} ,{\text{A}}_{1602} = 0.5\overline{c}_{66}^{\left( 2 \right)} \left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{2} \eta^{2}, \hfill \\ {\text{A}}_{1640} = {\mathbf{a}}_{1640} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{4} ,\;{\text{A}}_{1604} = {\mathbf{a}}_{1604} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta^{4} ,\;{\text{A}}_{1622} = - {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta^{2} , \hfill \\ \end{gathered} $$
$$ {\text{A}}_{1711} = 0.5\left( {\overline{c}_{12}^{\left( 2 \right)} + \overline{c}_{66}^{\left( 2 \right)} } \right)\left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{2} \eta ,\;{\text{A}}_{1713} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta^{3} ,\;{\text{A}}_{1731} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta , $$
$$ {\text{A}}_{2111} = - \sum\limits_{n = 1}^{2} {\left( {\overline{c}_{12}^{\left( n \right)} + \overline{c}_{66}^{\left( n \right)} } \right)\theta_{{}}^{\left( n \right)} \lambda \eta } ,\;{\text{A}}_{2131} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1213} } {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} \lambda^{3} \eta ,\;{\text{A}}_{2113} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1213} } {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} \lambda^{3} \eta^{3} , $$
$$ \begin{gathered} {\text{A}}_{2202} = - \sum\limits_{n = 1}^{2} {\overline{c}_{22}^{\left( n \right)} \theta_{{}}^{\left( n \right)} } \lambda \eta^{2} ,\;{\text{A}}_{2201} = - \sum\limits_{n = 1}^{2} {\overline{c}_{66}^{\left( n \right)} \theta_{{}}^{\left( n \right)} } \lambda ,\;{\text{A}}_{2204} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1140} } {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} \lambda^{3} \eta^{4} , \hfill \\ {\text{A}}_{2240} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{2240} {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} } \lambda^{3} ,\;{\text{A}}_{2222} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1122} } {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} \lambda^{3} \eta^{2} ,\;{\text{A}}_{2411} = - 0.5\left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)\left( {\theta_{{}}^{\left( n \right)} } \right)^{2} \lambda^{2} \eta \; , \hfill \\ \end{gathered} $$
$$ {\text{A}}_{2431} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta ,\;{\text{A}}_{2413} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta^{3} ,\;{\text{A}}_{2502} = - 0.5\overline{c}_{22}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{2} \eta^{2} , $$
$$ {\text{A}}_{2520} = - 0.5\overline{c}_{66}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{2} ,\;{\text{A}}_{2504} = {\mathbf{a}}_{1440} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta^{4} ,\;{\text{A}}_{2540} = {\mathbf{a}}_{1404} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{4} , $$
$$ {\text{A}}_{2522} = {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{4} \eta^{2} ,{\text{A}}_{2611} = 0.5\left( {\overline{c}_{12}^{\left( 2 \right)} + \overline{c}_{66}^{\left( 2 \right)} } \right)\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{2} \eta ,\;{\text{A}}_{2631} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta , $$
$$ {\text{A}}_{2613} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta^{3} ,\;{\text{A}}_{2702} = 0.5\overline{c}_{22}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{2} \eta^{2} ,{\text{A}}_{2720} = 0.5\overline{c}_{66}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{2} , $$
$$ {\text{A}}_{2704} = {\mathbf{a}}_{1640} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta^{4} ,{\text{A}}_{2740} = {\mathbf{a}}_{1604} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{4} ,\;{\text{A}}_{2722} = - {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{4} \eta^{2} , $$
$$ \begin{gathered} {\text{A}}_{3320} = \left[ {\sum\limits_{n = 1}^{2} {\overline{c}_{44}^{\left( n \right)} \theta_{{}}^{\left( n \right)} } - \left( {\overline{k}_{g} + \overline{\Gamma }} \right)} \right]\lambda ,\;{\text{A}}_{3340} = - \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1104} } {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} \lambda^{3} ,\;{\text{A}}_{3302} = \left[ {\sum\limits_{n = 1}^{2} {\overline{c}_{44}^{\left( n \right)} \theta_{{}}^{\left( n \right)} } - \left( {\overline{k}_{g} + \overline{\Gamma }} \right)} \right]\lambda \eta^{2}, \hfill \\ {\text{A}}_{3304} = - \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{1104} } {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} \lambda^{3} \eta^{4} ,\;{\text{A}}_{3322} = \sum\limits_{n = 1}^{2} {{\mathbf{a}}_{3322} } {\mathbf{l}}^{\left( n \right)} \theta_{{}}^{\left( n \right)} \lambda^{3} \eta^{2} ,{\text{A}}_{3410} = \overline{c}_{44}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda ,\;{\text{A}}_{3430} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{3} , \hfill \\ \end{gathered} $$
$$ A_{3412} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{3} \eta^{2} ,\;{\text{A}}_{3501} = \overline{c}_{44}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda \eta ,\;{\text{A}}_{3521} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{3} \eta ,\;A_{3503} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{3} \eta^{3} , $$
$$ {\text{A}}_{3610} = \overline{c}_{44}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda ,\;{\text{A}}_{3630} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{3} ,\;A_{3612} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{3} \eta^{2} {\text{A}}_{3701} = \overline{c}_{44}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda \eta , $$
$$ {\text{A}}_{3721} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{3} \eta A_{3702} = {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{3} \eta^{3} {\text{A}}_{3820} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 1 \right)} \overline{e}_{15} \lambda^{2} ,\;{\text{A}}_{3802} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 1 \right)} \overline{e}_{24} \lambda^{2} \eta^{2} , $$
$$ {\text{A}}_{3920} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 2 \right)} \overline{f}_{15} \lambda^{2} ,\;{\text{A}}_{3902} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 2 \right)} \overline{f}_{24} \lambda^{2} \eta^{2} {\text{A}}_{4120} = - 0.5\overline{c}_{11}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda , $$
$$ {\text{A}}_{4102} = - 0.5\overline{c}_{66}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda \eta^{2} ,\;{\text{A}}_{4140} = {\mathbf{a}}_{1440} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} ,{\text{A}}_{4104} = {\mathbf{a}}_{1404} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta^{4} , $$
$$ {\text{A}}_{4122} = {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta^{2} ,{\text{A}}_{4211} = - 0.5\left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda \eta ,\;{\text{A}}_{4213} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta^{3} , $$
$$ {\text{A}}_{4231} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta ,{\text{A}}_{4310} = \overline{c}_{44}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} ,\;{\text{A}}_{4330} = - {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{2} ,\;{\text{A}}_{4312} = - {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{2} \eta^{2} , $$
$$ \begin{gathered} {\text{A}}_{4400} = \overline{c}_{44}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} ,{\text{A}}_{4420} = - \left[ {{{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{11}^{\left( 1 \right)} } \mathord{\left/ {\vphantom {{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{11}^{\left( 1 \right)} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4420} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} } \right]\lambda^{2} ,\;\;{\text{A}}_{4422} = {\mathbf{a}}_{4422} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta^{2}, \hfill \\ {\text{A}}_{4402} = - \left[ {{{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{66}^{\left( 1 \right)} } \mathord{\left/ {\vphantom {{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{66}^{\left( 1 \right)} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4402} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} } \right]\lambda^{2} \eta^{2} ,\;{\text{A}}_{4440} = {\mathbf{a}}_{4440} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} ,\;{\text{A}}_{4404} = {\mathbf{a}}_{4404} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta^{4} , \hfill \\ \end{gathered} $$
$$ {\text{A}}_{4511} = \left[ { - {{\left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} } \mathord{\left/ {\vphantom {{\left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4511} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} } \right]\lambda^{2} \eta ,\;{\text{A}}_{4531} = {\mathbf{a}}_{4531} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta^{3} , $$
$$ \begin{gathered} {\text{A}}_{4513} = {\mathbf{a}}_{4531} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta ,\;{\text{A}}_{4810} = - \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left( {\overline{e}_{15} + \overline{e}_{31} } \right)\theta_{{}}^{\left( 1 \right)} \lambda \;{\text{A}}_{5111} = - 0.5\left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda \eta, \hfill \\ {\text{A}}_{5113} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta^{3} {\text{, A}}_{5131} = {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta ,\;{\text{A}}_{5202} = - 0.5\overline{c}_{22}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda \eta^{2} , \hfill \\ \end{gathered} $$
$$ {\text{A}}_{5220} = - 0.5\overline{c}_{66}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda ,\;{\text{A}}_{5222} = {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta^{4} ,{\text{A}}_{5204} = {\mathbf{a}}_{1440} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} , $$
$$ {\text{A}}_{5240} = {\mathbf{a}}_{1404} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{2} \lambda^{3} \eta^{2} ,\;{\text{A}}_{5301} = \overline{c}_{44}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \eta ,\;{\text{A}}_{5303} = - {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{2} \eta^{3} ,\;{\text{A}}_{5321} = - {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} \lambda^{2} \eta , $$
$$ {\text{A}}_{5411} = \left[ {{{ - \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)} \mathord{\left/ {\vphantom {{ - \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \left( {\overline{c}_{12}^{\left( 1 \right)} + \overline{c}_{66}^{\left( 1 \right)} } \right)} 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4511} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} } \right]\lambda^{2} \eta ,\;{\text{A}}_{5431} = {\mathbf{a}}_{4531} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta , $$
$$ \begin{gathered} {\text{A}}_{5413} = {\mathbf{a}}_{4531} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta^{3} ,\;{\text{A}}_{5500} = \overline{c}_{44}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} ,\;{\text{A}}_{5502} = \left[ { - {{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{22}^{\left( 1 \right)} } \mathord{\left/ {\vphantom {{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{22}^{\left( 1 \right)} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4420} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} } \right]\lambda^{2} \eta^{2}, \hfill \\ {\text{A}}_{5520} = \left[ { - {{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{66}^{\left( 1 \right)} } \mathord{\left/ {\vphantom {{\left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \overline{c}_{66}^{\left( 1 \right)} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4402} {\mathbf{l}}^{\left( 1 \right)} \theta_{{}}^{\left( 1 \right)} } \right]\lambda^{2} ,{\text{A}}_{5522} = {\mathbf{a}}_{4422} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta^{2} ,\;{\text{A}}_{5504} = {\mathbf{a}}_{4440} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} \eta^{4}, \hfill \\ {\text{A}}_{5540} = {\mathbf{a}}_{4404} {\mathbf{l}}^{\left( 1 \right)} \left( {\theta_{{}}^{\left( 1 \right)} } \right)^{3} \lambda^{4} ,\;{\text{A}}_{5801} = - \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left( {\overline{e}_{24} + \overline{e}_{31} } \right)\theta_{{}}^{\left( 1 \right)} \lambda \eta ,{\text{A}}_{6120} = 0.5\overline{c}_{11}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda , \hfill \\ \end{gathered} $$
$$ \begin{gathered} {\text{A}}_{6102} = 0.5\overline{c}_{66}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda \eta^{2} ,\;{\text{A}}_{6140} = {\mathbf{a}}_{1440} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} ,{\text{A}}_{6104} = {\mathbf{a}}_{1404} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} \eta^{4}, \hfill \\ {\text{A}}_{6122} = {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} \eta^{2} ,{\text{A}}_{6211} = 0.5\left( {\overline{c}_{12}^{\left( 2 \right)} + \overline{c}_{66}^{\left( 2 \right)} } \right)\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda \eta ,\;{\text{A}}_{6213} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} \eta^{3} , \hfill \\ \end{gathered} $$
$$ {\text{A}}_{6231} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} \eta ,\;{\text{A}}_{6310} = \overline{c}_{44}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} ,\;{\text{A}}_{6330} = - {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{2} ,\;{\text{A}}_{6312} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{2} \eta^{2} , $$
$$ \begin{gathered} {\text{A}}_{6600} = \overline{c}_{44}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} ,\;{\text{A}}_{6620} = \left[ {{{ - \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \overline{c}_{11}^{\left( 2 \right)} } \mathord{\left/ {\vphantom {{ - \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \overline{c}_{11}^{\left( 2 \right)} } 3}} \right. \kern-\nulldelimiterspace} 3}{ + }{\mathbf{a}}_{4420} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} } \right]\lambda^{2} ,\;{\text{A}}_{6640} = {\mathbf{a}}_{4440} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4}, \hfill \\ {\text{A}}_{6602} = \left[ { - {{\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \overline{c}_{66}^{\left( 2 \right)} } \mathord{\left/ {\vphantom {{\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \overline{c}_{66}^{\left( 2 \right)} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4402} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} } \right]\lambda^{2} \eta^{2} ,{\text{A}}_{6622} = {\mathbf{a}}_{4422} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4} \eta^{2} , \hfill \\ \end{gathered} $$
$$ \begin{gathered} {\text{A}}_{6604} = {\mathbf{a}}_{4404} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4} \eta^{4} {\text{A}}_{6910} = - \left( {\overline{f}_{15} + \overline{f}_{31} } \right)\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 2 \right)} \lambda ,{\text{A}}_{7111} = 0.5\left( {\overline{c}_{12}^{\left( 2 \right)} + \overline{c}_{66}^{\left( 2 \right)} } \right)\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda \eta, \hfill \\ {\text{A}}_{7113} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \delta^{2} \lambda^{3} \eta^{3} ,\;{\text{A}}_{7131} = - {\mathbf{a}}_{1513} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} \eta ,\;{\text{A}}_{7202} = 0.5\overline{c}_{22}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda \eta^{2}, \hfill \\ \end{gathered} $$
$$ {\text{A}}_{7220} = 0.5\overline{c}_{66}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda ,\;{\text{A}}_{7222} = {\mathbf{a}}_{1422} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} \eta^{4} ,{\text{A}}_{7204} = - {\mathbf{a}}_{1440} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} , $$
$$ {\text{A}}_{7240} = - {\mathbf{a}}_{1404} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{2} \lambda^{3} \eta^{2} ,{\text{A}}_{7301} = \overline{c}_{44}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \eta ,\;{\text{A}}_{7303} = - {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{2} \eta^{3} ,\;{\text{A}}_{7321} = - {\mathbf{a}}_{3430} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} \lambda^{2} \eta , $$
$$ {\text{A}}_{7611} = \left[ { - {{\left( {\overline{c}_{12}^{\left( 2 \right)} + \overline{c}_{66}^{\left( 2 \right)} } \right)\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} } \mathord{\left/ {\vphantom {{\left( {\overline{c}_{12}^{\left( 2 \right)} + \overline{c}_{66}^{\left( 2 \right)} } \right)\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} } 3}} \right. \kern-\nulldelimiterspace} 3}{ + }{\mathbf{a}}_{4511} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} } \right]\lambda^{2} \eta ,\;{\text{A}}_{7631} = {\mathbf{a}}_{4531} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4} \eta , $$
$$ \begin{gathered} {\text{A}}_{7613} = {\mathbf{a}}_{4531} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4} \eta^{3} ,\;{\text{A}}_{7700} = \overline{c}_{44}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} ,\;{\text{A}}_{7702} = \left[ { - \overline{c}_{22}^{\left( 2 \right)} {{\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} } \mathord{\left/ {\vphantom {{\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4420} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} } \right]\lambda^{2} \eta^{2}, \hfill \\ {\text{A}}_{7720} = \left[ { - {{\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \overline{c}_{66}^{\left( 2 \right)} } \mathord{\left/ {\vphantom {{\left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \overline{c}_{66}^{\left( 2 \right)} } 3}} \right. \kern-\nulldelimiterspace} 3} + {\mathbf{a}}_{4402} {\mathbf{l}}^{\left( 2 \right)} \theta_{{}}^{\left( 2 \right)} } \right]\lambda^{2} ,\;{\text{A}}_{7704} = {\mathbf{a}}_{4440} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4} \eta^{4} ,\;{\text{A}}_{7722} = {\mathbf{a}}_{4422} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4} \eta^{2} , \hfill \\ \end{gathered} $$
$$ {\text{A}}_{7740} = {\mathbf{a}}_{4404} {\mathbf{l}}^{\left( 2 \right)} \left( {\theta_{{}}^{\left( 2 \right)} } \right)^{3} \lambda^{4} ,{\text{A}}_{7902} = - \left( {\overline{f}_{24} + \overline{f}_{31} } \right)\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 2 \right)} \lambda \eta ,\;{\text{A}}_{8320} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\overline{e}_{15} \theta_{{}}^{\left( 1 \right)} \lambda \; , $$
$$ {\text{A}}_{8302} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\overline{e}_{24} \theta_{{}}^{\left( 1 \right)} \lambda \eta^{2} , $$
$$ {\text{A}}_{8410} = \left( {\overline{e}_{15} + \overline{e}_{31} } \right)\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 1 \right)} \lambda , $$
$$ {\text{A}}_{8501} = \left( {\overline{e}_{24} + \overline{e}_{31} } \right)\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 1 \right)} \lambda \eta , $$
$$ {\text{A}}_{8800} = - \left( {{{\pi^{2} } \mathord{\left/ {\vphantom {{\pi^{2} } {2\theta_{{}}^{\left( 1 \right)} }}} \right. \kern-\nulldelimiterspace} {2\theta_{{}}^{\left( 1 \right)} }}} \right)\overline{h}_{33}^{{}} ,\;{\text{A}}_{8820} = 0.5\theta_{{}}^{\left( 1 \right)} \overline{h}_{11} \lambda^{2} ,\;{\text{A}}_{8802} = 0.5\theta_{{}}^{\left( 1 \right)} \overline{h}_{22} \lambda^{2} \eta^{2} {\text{A}}_{9320} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\overline{f}_{15} \theta_{{}}^{\left( 2 \right)} \lambda , $$
$$ {\text{A}}_{9302} = \left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\overline{f}_{24} \theta_{{}}^{\left( 2 \right)} \lambda \eta^{2} ,{\text{A}}_{9610} = \left( {\overline{f}_{15} + \overline{f}_{31} } \right)\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 2 \right)} \lambda ,{\text{A}}_{9701} = \left( {\overline{f}_{24} + \overline{f}_{31} } \right)\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\theta_{{}}^{\left( 2 \right)} \lambda \eta , $$
$$ {\text{A}}_{9900} = - \left( {{{\pi^{2} } \mathord{\left/ {\vphantom {{\pi^{2} } {2\theta_{{}}^{\left( 2 \right)} }}} \right. \kern-\nulldelimiterspace} {2\theta_{{}}^{\left( 2 \right)} }}} \right)\overline{\mu }_{33}^{{}} ,\;{\text{A}}_{9920} = 0.5\theta_{{}}^{\left( 2 \right)} \overline{\mu }_{11} \lambda^{2} , $$

in which,

$$ {\mathbf{a}}_{1104} = \left[ {0,\;\frac{8}{15},\;\frac{1}{4}} \right],{\mathbf{a}}_{1122} = \left[ {2,\;\frac{4}{3},\;\frac{1}{4}} \right],{\mathbf{a}}_{1213} = \left[ {2,\;\frac{4}{15},\; - \frac{1}{4}} \right],{\mathbf{a}}_{1440} = \left[ {1,\;\frac{2}{5},\;0} \right] , $$
$$ \begin{aligned}{\mathbf{a}}_{1404} &= \left[ {0,\;\frac{4}{15},\;\frac{1}{8}} \right],\,{\mathbf{a}}_{1422} = \left[ {1,\;\frac{2}{3},\;\frac{1}{8}} \right],\,{\mathbf{a}}_{1513} = \left[ {1,\;\frac{2}{15},\; - \frac{1}{8}} \right],\\ {\mathbf{a}}_{1640} &= \left[ { - 1,\; - \frac{2}{5},\;0} \right],\,{\mathbf{a}}_{1604} = \left[ {0,\; - \frac{4}{15},\; - \frac{1}{8}} \right], \end{aligned} $$
$$ {\mathbf{a}}_{3322} = - \left[ {0,\;\frac{16}{{15}},\;\frac{1}{2}} \right],\,{\mathbf{a}}_{3430} = \left[ {0,\; - \frac{16}{{15}},\;\frac{1}{4}} \right],\,{\mathbf{a}}_{4420} = - \left[ {2,\;\frac{32}{{15}},\;\frac{1}{4}} \right],\,{\mathbf{a}}_{4402} = - \left[ {0,\;\frac{4}{3},\;1} \right], $$
$$ {\mathbf{a}}_{4422} = \left[ {\frac{2}{3},\;\frac{4}{9},\;\frac{1}{12}} \right],\,{\mathbf{a}}_{4440} = \left[ {\frac{2}{3},\;\frac{4}{15},\;0} \right],\,{\mathbf{a}}_{4404} = \left[ {0,\;\frac{8}{45},\;\frac{1}{12}} \right],\,{\mathbf{a}}_{4511} = - \left[ {2,\;\frac{4}{5},\; - \frac{3}{4}} \right], $$
$$ {\mathbf{a}}_{4531} = \left[ {\frac{2}{3},\;\frac{4}{45},\; - \frac{1}{12}} \right]\,{\text{and}}\,{\mathbf{l}}^{\left( n \right)} = \left[ {\overline{c}_{44}^{\left( n \right)} \overline{l}_{0}^{2} ,\;\overline{c}_{44}^{\left( n \right)} \overline{l}_{1}^{2} ,\;\overline{c}_{44}^{\left( n \right)} \overline{l}_{2}^{2} } \right]^{T} . $$

Appendix D

For the PE-PM bi-layered composite plates with four simply supported edges, the displacements, deflection, rotations, electric and magnetic potentials can be expressed as

$$ \begin{gathered} \overline{u} = U\cos (\pi \overline{x}_{1}^{{}} )sin\left( {\pi \overline{x}_{2}^{{}} } \right),\;\overline{v} = V\sin (\pi \overline{x}_{1}^{{}} )\cos \left( {\pi \overline{x}_{2}^{{}} } \right),\;\overline{w} = W\sin (\pi \overline{x}_{1}^{{}} )sin\left( {\pi \overline{x}_{2}^{{}} } \right) , \hfill \\ \psi_{1}^{\left( 1 \right)} = \Psi_{1}^{\left( 1 \right)} \cos (\pi \overline{x}_{1}^{{}} )sin\left( {\pi \overline{x}_{2}^{{}} } \right),\;\psi_{2}^{\left( 1 \right)} = \Psi_{2}^{\left( 1 \right)} \sin (\pi \overline{x}_{1}^{{}} )\cos \left( {\pi \overline{x}_{2}^{{}} } \right),\;\psi_{1}^{\left( 2 \right)} = \Psi_{1}^{\left( 2 \right)} \cos (\pi \overline{x}_{1}^{{}} )sin\left( {\pi \overline{x}_{2}^{{}} } \right) , \hfill \\ \psi_{2}^{\left( 2 \right)} = \Psi_{2}^{\left( 2 \right)} \sin (\pi \overline{x}_{1}^{{}} )\cos \left( {\pi \overline{x}_{2}^{{}} } \right),\;\overline{\phi }^{\left( 1 \right)} = \Upsilon^{\left( 1 \right)} \sin \left( {\pi \overline{x}_{1}^{{}} } \right)sin\left( {\pi \overline{x}_{2}^{{}} } \right),\;\overline{\phi }^{\left( 2 \right)} = \Upsilon_{{}}^{\left( 2 \right)} \sin (\pi \overline{x}_{1}^{{}} )sin\left( {\pi \overline{x}_{2}^{{}} } \right) . \hfill \\ \end{gathered} $$
(43)

For the static bending problem, the applied transverse load \(\overline{q}\) can be also expanded in the double trigonometric series as

$$ \overline{q} = Q\sin \left( {\pi \overline{x}_{1} } \right)\sin \left( {\pi \overline{x}_{2} } \right) $$
(44)

where

$$ Q = 4\int_{0}^{1} {\int_{0}^{1} {\overline{q}\left( {\overline{x}_{1} ,\overline{x}_{2} } \right)} } \sin \left( {\pi \overline{x}_{1} } \right)\sin \left( {\pi \overline{x}_{2} } \right)d\overline{x}_{1} d\overline{x}_{2} . $$
(45)

In this paper thre special loading cases are discussed, i.e., sinusoidal distributed load (\(Q = q_{0}\)), uniformly distributed load (\(Q = {{16q_{0} } \mathord{\left/ {\vphantom {{16q_{0} } {\pi^{2} }}} \right. \kern-\nulldelimiterspace} {\pi^{2} }}\)), and point load (\(Q = 4q_{0}\)).

The following system of algebraic equations can be obtained as

$$ \left[ {\begin{array}{*{20}l} {K_{11} } \hfill & {K_{12} } \hfill & {K_{13} } \hfill & {K_{14} } \hfill & {K_{15} } \hfill & {K_{16} } \hfill & {K_{17} } \hfill & {K_{18} } \hfill & {K_{19} } \hfill \\ {K_{21} } \hfill & {K_{22} } \hfill & {K_{23} } \hfill & {K_{24} } \hfill & {K_{25} } \hfill & {K_{26} } \hfill & {K_{27} } \hfill & {K_{28} } \hfill & {K_{29} } \hfill \\ {K_{31} } \hfill & {K_{32} } \hfill & {K_{33} } \hfill & {K_{34} } \hfill & {K_{35} } \hfill & {K_{36} } \hfill & {K_{37} } \hfill & {K_{38} } \hfill & {K_{39} } \hfill \\ {K_{41} } \hfill & {K_{42} } \hfill & {K_{43} } \hfill & {K_{44} } \hfill & {K_{45} } \hfill & {K_{46} } \hfill & {K_{47} } \hfill & {K_{48} } \hfill & {K_{49} } \hfill \\ {K_{51} } \hfill & {K_{52} } \hfill & {K_{53} } \hfill & {K_{54} } \hfill & {K_{55} } \hfill & {K_{56} } \hfill & {K_{57} } \hfill & {K_{58} } \hfill & {K_{59} } \hfill \\ {K_{61} } \hfill & {K_{62} } \hfill & {K_{63} } \hfill & {K_{64} } \hfill & {K_{65} } \hfill & {K_{66} } \hfill & {K_{67} } \hfill & {K_{68} } \hfill & {K_{69} } \hfill \\ {K_{71} } \hfill & {K_{72} } \hfill & {K_{73} } \hfill & {K_{74} } \hfill & {K_{75} } \hfill & {K_{76} } \hfill & {K_{77} } \hfill & {K_{78} } \hfill & {K_{79} } \hfill \\ {K_{81} } \hfill & {K_{82} } \hfill & {K_{83} } \hfill & {K_{84} } \hfill & {K_{85} } \hfill & {K_{86} } \hfill & {K_{87} } \hfill & {K_{88} } \hfill & {K_{89} } \hfill \\ {K_{91} } \hfill & {K_{92} } \hfill & {K_{93} } \hfill & {K_{94} } \hfill & {K_{95} } \hfill & {K_{96} } \hfill & {K_{97} } \hfill & {K_{98} } \hfill & {K_{99} } \hfill \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} U \hfill \\ V \hfill \\ W \hfill \\ {\Psi_{1}^{\left( 1 \right)} } \hfill \\ {\Psi_{2}^{\left( 1 \right)} } \hfill \\ {\Psi_{1}^{\left( 2 \right)} } \hfill \\ {\Psi_{2}^{\left( 2 \right)} } \hfill \\ {\Upsilon^{\left( 1 \right)} } \hfill \\ {\Upsilon^{\left( 2 \right)} } \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} 0 \hfill \\ 0 \hfill \\ Q \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{array} } \right] $$
(46)

where

$$ \left\{ \begin{gathered} K_{11} = \left( { - 1} \right)\pi^{2} {\text{A}}_{1120} + \left( { - 1} \right)\pi^{2} {\text{A}}_{1102} + \pi^{4} {\text{A}}_{1140} + \pi^{4} {\text{A}}_{1104} + \pi^{4} {\text{A}}_{1122}, \; \hfill \\ K_{12} = \left( { - 1} \right)\pi^{2} {\text{A}}_{1211} + \pi^{4} {\text{A}}_{1213} + \pi^{4} {\text{A}}_{1231}, \; \hfill \\ K_{13} = 0,\;K_{14} = \left( { - 1} \right)\pi^{2} {\text{A}}_{1420} + \left( { - 1} \right)\pi^{2} {\text{A}}_{1402} + \pi^{4} {\text{A}}_{1440} + \pi^{4} {\text{A}}_{1404} + \pi^{4} {\text{A}}_{1422}, \; \hfill \\ K_{15} = \left( { - 1} \right)\pi^{2} {\text{A}}_{1511} + \pi^{4} {\text{A}}_{1513} + \pi^{4} {\text{A}}_{1531}, \hfill \\ K_{16} = \left( { - 1} \right)\pi^{2} {\text{A}}_{1620} + \left( { - 1} \right)\pi^{2} {\text{A}}_{1602} + \pi^{4} {\text{A}}_{1640} + \pi^{4} {\text{A}}_{1604} + \pi^{4} {\text{A}}_{1622}, \hfill \\ K_{17} = \left( { - 1} \right)\pi^{2} {\text{A}}_{1711} + \pi^{4} {\text{A}}_{1713} + \pi^{4} {\text{A}}_{1731} ,\;K_{18} = 0,\;K_{19} = 0, \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{21} = \left( { - 1} \right)\pi^{2} {\text{A}}_{2111} + \pi^{4} {\text{A}}_{2131} + \pi^{4} {\text{A}}_{2113}, \; \hfill \\ K_{22} = \left( { - 1} \right)\pi^{2} {\text{A}}_{2202} + \left( { - 1} \right)\pi^{2} {\text{A}}_{2220} + \pi^{4} {\text{A}}_{2204} + \pi^{4} {\text{A}}_{2240} + \pi^{4} {\text{A}}_{2222}, \hfill \\ K_{23} = 0,K_{24} = \left( { - 1} \right)\pi^{2} {\text{A}}_{2411} + \pi^{4} {\text{A}}_{2431} + \pi^{4} {\text{A}}_{2413}, \hfill \\ K_{25} = \left( { - 1} \right)\pi^{2} {\text{A}}_{2502} + \left( { - 1} \right)\pi^{2} {\text{A}}_{2520} + \pi^{4} {\text{A}}_{2504} + \pi^{4} {\text{A}}_{2540} + \pi^{4} {\text{A}}_{2522}, \hfill \\ K_{26} = \left( { - 1} \right)\pi^{2} {\text{A}}_{2611} + \pi^{4} {\text{A}}_{2631} + \pi^{4} {\text{A}}_{2613}, \hfill \\ K_{27} = \left( { - 1} \right)\pi^{2} {\text{A}}_{2702} + \left( { - 1} \right)\pi^{2} {\text{A}}_{2720} + \pi^{4} {\text{A}}_{2704} + \pi^{4} {\text{A}}_{2740} + \pi^{4} {\text{A}}_{2722} ,\;K_{28} = 0,\;K_{29} = 0 , \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{31} = 0,\;K_{32} = 0,\;K_{33} = \overline{k}_{w} + \left( { - 1} \right)\pi^{2} {\text{A}}_{3320} + \left( { - 1} \right)\pi^{2} {\text{A}}_{3302} + \pi^{4} {\text{A}}_{3340} + \pi^{4} {\text{A}}_{3304} + \pi^{4} {\text{A}}_{3322}, \hfill \\ K_{34} = \left( { - 1} \right)\pi {\text{A}}_{3410} + \pi^{3} {\text{A}}_{3430} + \pi^{3} {\text{A}}_{3412} ,\;K_{35} = \left( { - 1} \right)\pi {\text{A}}_{3501} + \pi^{3} {\text{A}}_{3521} + \pi^{3} {\text{A}}_{3503}, \hfill \\ K_{36} = \left( { - 1} \right)\pi {\text{A}}_{3610} + \pi^{3} {\text{A}}_{3630} + \pi^{3} {\text{A}}_{3612} ,\;K_{37} = \left( { - 1} \right)\pi {\text{A}}_{3701} + \pi^{3} {\text{A}}_{3721} + \pi^{3} {\text{A}}_{3703}, \hfill \\ K_{38} = \left( { - 1} \right)\pi^{2} {\text{A}}_{3820} + \left( { - 1} \right)\pi^{2} {\text{A}}_{3802} ,\;K_{39} = \left( { - 1} \right)\pi^{2} {\text{A}}_{3920} + \left( { - 1} \right)\pi^{2} {\text{A}}_{3902} , \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{41} = \left( { - 1} \right)\pi^{2} {\text{A}}_{4120} + \left( { - 1} \right)\pi^{2} {\text{A}}_{4102} + \pi^{4} {\text{A}}_{4140} + \pi^{4} {\text{A}}_{4104} + \pi^{4} {\text{A}}_{4122}, \hfill \\ K_{42} = \left( { - 1} \right)\pi^{2} {\text{A}}_{4211} + \pi^{4} {\text{A}}_{4213} + \pi^{4} {\text{A}}_{4231} ,\;K_{43} = \pi {\text{A}}_{4510} + \left( { - 1} \right)\pi^{3} {\text{A}}_{4530} + \left( { - 1} \right)\pi^{3} {\text{A}}_{4512}, \hfill \\ K_{44} = {\text{A}}_{4400} + \left( { - 1} \right)\pi^{2} {\text{A}}_{4420} + \left( { - 1} \right)\pi^{2} {\text{A}}_{4402} + \pi^{4} {\text{A}}_{4422} + \pi^{4} {\text{A}}_{4440} + \pi^{4} {\text{A}}_{4404}, \; \hfill \\ K_{45} = \left( { - 1} \right)\pi^{2} {\text{A}}_{4511} + \pi^{4} {\text{A}}_{4531} + \pi^{4} {\text{A}}_{4513} ,\;K_{46} = 0,\;K_{47} = 0,\;K_{48} = \pi {\text{A}}_{4810} ,\;K_{49} = 0 , \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{51} = \left( { - 1} \right)\pi^{2} {\text{A}}_{5111} + \left( { - 1} \right)\pi^{2} {\text{A}}_{5113} + \pi^{4} {\text{A}}_{5131}, \; \hfill \\ K_{52} = \left( { - 1} \right)\pi^{2} {\text{A}}_{5202} + \left( { - 1} \right)\pi^{2} {\text{A}}_{5220} + \pi^{4} {\text{A}}_{5222} + \pi^{4} {\text{A}}_{5204} + \pi^{4} {\text{A}}_{5240}, \hfill \\ K_{53} = \pi {\text{A}}_{5301} + \left( { - 1} \right)\pi^{3} {\text{A}}_{5303} + \left( { - 1} \right)\pi^{3} {\text{A}}_{5321} ,K_{54} = \left( { - 1} \right)\pi^{2} {\text{A}}_{5411} + \pi^{4} {\text{A}}_{5431} + \pi^{4} {\text{A}}_{5413}, \hfill \\ K_{55} = {\text{A}}_{5500} + \left( { - 1} \right)\pi^{2} {\text{A}}_{5502} + \left( { - 1} \right)\pi^{2} {\text{A}}_{5520} + \pi^{4} {\text{A}}_{5522} + \pi^{4} {\text{A}}_{5504} + \pi^{4} {\text{A}}_{5540}, \hfill \\ K_{56} = 0,\;K_{57} = 0,\;K_{58} = \pi {\text{A}}_{5801} ,K_{59} = 0 , \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{61} = \left( { - 1} \right)\pi^{2} {\text{A}}_{6120} + \left( { - 1} \right)\pi^{2} {\text{A}}_{6102} + \pi^{4} {\text{A}}_{6140} + \pi^{4} {\text{A}}_{6104} + \pi^{4} {\text{A}}_{6122}, \; \hfill \\ K_{62} = \left( { - 1} \right)\pi^{2} {\text{A}}_{6211} + \pi^{4} {\text{A}}_{6213} + \pi^{4} {\text{A}}_{6231} ,K_{63} = \pi {\text{A}}_{6310} + \left( { - 1} \right)\pi^{3} {\text{A}}_{6330} + \left( { - 1} \right)\pi^{3} {\text{A}}_{6312}, \; \hfill \\ K_{64} = 0,\;K_{65} = 0,\;K_{66} = {\text{A}}_{6600} + \left( { - 1} \right)\pi^{2} {\text{A}}_{6620} + \left( { - 1} \right)\pi^{2} {\text{A}}_{6602} + \pi^{4} {\text{A}}_{6622} + \pi^{4} {\text{A}}_{6640} + \pi^{4} {\text{A}}_{6604}, \; \hfill \\ K_{67} = \left( { - 1} \right)\pi^{2} {\text{A}}_{6711} + \pi^{4} {\text{A}}_{6731} + \pi^{4} {\text{A}}_{6713} ,\;K_{68} = 0,\;K_{69} = \pi {\text{A}}_{6910} , \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{71} = \left( { - 1} \right)\pi^{2} {\text{A}}_{7111} + \left( { - 1} \right)\pi^{2} {\text{A}}_{7113} + \pi^{4} {\text{A}}_{7131}, \hfill \\ K_{72} = \left( { - 1} \right)\pi^{2} {\text{A}}_{7202} + \left( { - 1} \right)\pi^{2} {\text{A}}_{7220} + \pi^{4} {\text{A}}_{7222} + \pi^{4} {\text{A}}_{7204} + \pi^{4} {\text{A}}_{7240}, \hfill \\ K_{73} = \pi {\text{A}}_{7301} + \left( { - 1} \right)\pi^{3} {\text{A}}_{7303} + \left( { - 1} \right)\pi^{3} {\text{A}}_{7321} ,K_{74} = 0,\;K_{75} = 0, \hfill \\ K_{76} = \left( { - 1} \right)\pi^{2} {\text{A}}_{7611} + \pi^{4} {\text{A}}_{7631} + \pi^{4} {\text{A}}_{7613}, \; \hfill \\ K_{77} = {\text{A}}_{7700} + \left( { - 1} \right)\pi^{2} {\text{A}}_{7702} + \left( { - 1} \right)\pi^{2} {\text{A}}_{7720} + \pi^{4} {\text{A}}_{7722} + \pi^{4} {\text{A}}_{7704} + \pi^{4} {\text{A}}_{7740}, \hfill \\ K_{78} = 0,K_{79} = \pi {\text{A}}_{7901} , \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{81} = 0,\;K_{82} = 0,\;K_{83} = \left( { - 1} \right)\pi^{2} {\text{A}}_{8320} + \left( { - 1} \right)\pi^{2} {\text{A}}_{8302} ,K_{84} = \left( { - 1} \right)\pi {\text{A}}_{8410} ,K_{85} = \left( { - 1} \right)\pi {\text{A}}_{8501}, \; \hfill \\ K_{86} = 0,\;K_{87} = 0,\;K_{88} = {\text{A}}_{8800} + \left( { - 1} \right)\pi^{2} {\text{A}}_{8820} + \left( { - 1} \right)\pi^{2} {\text{A}}_{8802} ,\;K_{89} = 0, \hfill \\ \end{gathered} \right. $$
$$ \left\{ \begin{gathered} K_{91} = 0,\;K_{92} = 0,\;K_{93} = \left( { - 1} \right)\pi^{2} {\text{A}}_{9320} + \left( { - 1} \right)\pi^{2} {\text{A}}_{9302} ,\;K_{94} = 0,\;K_{95} = 0, \hfill \\ K_{96} = \left( { - 1} \right)\pi {\text{A}}_{9610} ,K_{97} = \left( { - 1} \right)\pi {\text{A}}_{9701} ,K_{98} = 0,\;K_{99} = {\text{A}}_{9900} + \left( { - 1} \right)\pi^{2} {\text{A}}_{9920} + \left( { - 1} \right)\pi^{2} {\text{A}}_{9902} . \hfill \\ \end{gathered} \right. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Yan, Z. & Feng, W. Bending analyses of piezoelectric-piezomagnetic bi-layered composite plates based on the modified strain gradient theory. Acta Mech 233, 2969–2988 (2022). https://doi.org/10.1007/s00707-022-03249-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03249-9

Navigation