Skip to main content
Log in

Onset of thermosolutal convection in rotating horizontal nanofluid layers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The onset of thermosolutal convection in a uniformly rotating horizontal nanofluid layer is investigated. By employing an order-1 Galerkin residual method, an approximation of the instability threshold has been determined. A sufficient condition for the onset of steady convection has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat and Mass Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  2. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. Developments and Applications of Non-Newtonian Flows, Siginer, D.A. Wang, H.P. (eds.), ASME, FED-Vol. 231/MD-Vol. 66, 99-105

  3. Gil-Font, J., Navarrete, N., Cervantes, E., Mondragon, R., Torro, S.F., Martinez-Cuenca, R., Hernandez, L.: Convective heat transfer performance of thermal oil-based nanofluids in a high-temperature thermohydraulic loop. Int. J. Therm. Sci. 171, 107243 (2022)

    Article  Google Scholar 

  4. Gupta, U., Sharma, J., Wanchoo, R.K.: Thermosolutal convection in a horizontal nanofluid layer: Introduction of oscillatory motions. Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh, 1–6, (2014)

  5. Khalid, I.K., Mokhtar, N.F.M., Gani, S.S.A.: Coriolis force in a nanofluid layer in the presence of Soret effect, In: AIP Conference Proceedings (2017)

  6. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B/Fluids 29(3), 217–23 (2010)

    Article  MathSciNet  Google Scholar 

  7. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth: a revised model. Int. J. Heat Mass Transf. 77, 915–8 (2014)

    Article  Google Scholar 

  8. Nield, D.A., Kuznetsov, A.V.: The effect of local thermal nonequilibrium on the onset of convection in nanofluid. ASME J. Heat Transf. 132(5), 052405 (2010)

    Article  Google Scholar 

  9. Nield, D.A., Kuznetsov, A.V.: Onset of convection with internal heating in a porous medium saturated by a nanofluid. Transp. Porous Med. 99, 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  10. Rana, G.C., Thakur, R.C., Kango, S.K.: On the onset of thermosolutal instability in a layer of an elastico-viscous nanofluid in porous medium. FME Trans. 42, 1–9 (2014)

    Article  Google Scholar 

  11. Sharmaa, J., Guptab, U., Wanchoob, R.K., Ahuja, J.: An analytical and numerical study forthermosolutal nanofluid convection using revised model. Perspect. Sci. 8, 495–497 (2016)

    Article  Google Scholar 

  12. Shekaramiz, M., Fathi, S., Ataei Ataabadi, H., Kazemi-Varnamkhasti, H., Toghrai, D.: MHD nanofluid free convection inside the wavy triangular cavity considering periodic temperature boundary condition and velocity slip mechanisms. Int. J. Therm. Sci. 170, 107179 (2021)

    Article  Google Scholar 

  13. Tzou, D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130, 072401 (2008)

    Article  Google Scholar 

  14. Tzou, D.Y.: Thermal instability in nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)

    Article  Google Scholar 

  15. Umarathy, J.C., Shivakumara, I.S., Swami, Mahantesh S., Chamka, A.J.: Cross diffusion induces natural convection in a rotating porous layer saturated by nanofluid with variable thermal conductivity: Stability analysis. Spec. Top. Rev. Porous Media Int. J. 12(5), 1–21 (2021)

  16. Vadasz, P.: Heat conduction in nanofluid suspensions. J. Heat Transf. 128, 465–477 (2006)

    Article  Google Scholar 

  17. Vadasz, P.: Nanofluid Suspensions and Bi-composite Media as Derivatives of Interface Heat Transfer Modeling in Porous Media. In: Vadász, P. (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media. Theory and Applications of Transport in Porous Media. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  18. Vadasz, P., Vadasz, J., Govender, S.: Heat transfer enhancement in nanofluid suspensions: possible mechanisms and explanations. Int. J. Heat Mass Transf. 48(13), 2673–2683 (2005)

    Article  Google Scholar 

  19. Vadasz, P.: Centrifugal buoyancy in a rotating fluid layer next to and distant from the axis of rotation. Phys. Fluids 33(3), 034123:1-16, (2021)

  20. Yadava, D., Agrawalb, G.S., Lee, J.: Thermal instability in a rotating nanofluid layer: a revised model. Ain Shams Eng. J. 7(1), 431–440 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

F. Capone thanks GNFM of INdAM. R. De Luca thanks GNFM of INdAM and Progetto Giovani GNFM 2020 “Problemi di convezione in nanofluidi e in mezzi porosi bidispersivi”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vadasz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capone, F., Luca, R.D. & Vadasz, P. Onset of thermosolutal convection in rotating horizontal nanofluid layers. Acta Mech 233, 2237–2247 (2022). https://doi.org/10.1007/s00707-022-03217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03217-3

Navigation