Skip to main content
Log in

Semi-analytical solutions for functionally graded cubic quasicrystal laminates with mixed boundary conditions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Tremendous attention of researchers has been attracted by the unusual properties of quasicrystals. In this paper, the static solution of functionally gradient multilayered cubic quasicrystal plates on an elastic foundation with mixed boundary conditions is presented based on the linear elastic theory of quasicrystals. The quasicrystal material properties are assumed to have an exponent-law variation along the thickness direction. The elastic foundation is taken as the Winkler–Pasternak model, which is utilized to simulate the interaction between the plate and the elastic medium. The multilayered quasicrystal structures with two opposite edges simply supported and simply/clamped/free supported boundary conditions at other edges are considered. The semi-analytical method, which makes use of the state-space method in the z-direction, the one-dimensional differential quadrature method in the x-direction, and the series solution in the y-direction, is adopted to convert the system of governing partial differential equations into the ordinary one. From the propagator matrix, the static solution can be derived by imposing the boundary conditions on the top and bottom surfaces of the multilayered plates. Finally, typical numerical examples are presented to verify the effectiveness of this method and illustrate the influence of different boundary conditions, stacking sequence, foundation parameters, and functionally gradient exponential factors on the phonon and phason variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and its Applications. Springer, Heidelberg (2011)

    Book  Google Scholar 

  2. Zhao, M.H., Fan, C.Y., Lu, C.S., et al.: Analysis of interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane loads. Eng. Fract. Mech. 243(12), 107534 (2021)

    Article  Google Scholar 

  3. Li, L.H., Yun, G.H.: Elastic fields around a nanosized elliptic hole in decagonal quasicrystals. Chin. Phys. B 23(10), 106104 (2014)

    Article  Google Scholar 

  4. Li, L.H., Liu, G.T.: Study on a straight dislocation in an icosahedral quasicrystal with piezoelectric effects. Appl. Math. Mech. Engl. Ed. 39(9), 1259–1266 (2018)

    Article  MathSciNet  Google Scholar 

  5. Huang, Y.Z., Chen, J., Zhao, M., et al.: Electromechanical coupling characteristics of double-layer piezoelectric quasicrystal actuators. Int. J. Mech. Sci. 196, 106293 (2021)

    Article  Google Scholar 

  6. Pan, E.: Exact solution for functionally graded anisotropic elastic composite laminates. J. Compos. Mater. 37(21), 1903–1920 (2003)

    Article  Google Scholar 

  7. Pan, E., Han, F.: Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci. 43(3–4), 321–339 (2005)

    Article  Google Scholar 

  8. Varga, B., Fazakas, E., Varga, L.K.: Analysis of quasicrystal generation in conventionally solidified Al-Cu-Fe alloys. Met. Int. 17(8), 27–30 (2012)

    Google Scholar 

  9. Ferreira, T., Koga, G.Y., De Oliveira, I.L., et al.: Functionally graded aluminum reinforced with quasicrystal approximant phases—improving the wear resistance at high temperatures. Wear 462, 203507 (2020)

    Article  Google Scholar 

  10. Ferreira, T., De Oliveira, I.L., Zepon, G., et al.: Rotational outward solidification casting: an innovative single step process to produce a functionally graded aluminum reinforced with quasicrystal approximant phases. Mater. Des. 189, 108544 (2020)

    Article  Google Scholar 

  11. Zhang, L., Guo, J.H., Xing, Y.M.: Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. Int. J. Solids Struct. 132, 278–302 (2018)

    Article  Google Scholar 

  12. Zhang, L., Guo, J.H., Xing, Y.M.: Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates. Acta Mech. 230(5), 1781–1810 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Y.Z., Li, Y., Yang, L.Z., et al.: Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach. J. Zhejiang Univ. Sci. A 20(2), 133–147 (2019)

    Article  Google Scholar 

  14. Li, Y., Yang, L.Z., Gao, Y.: Thermo-elastic analysis of functionally graded multilayered two-dimensional decagonal quasicrystal plates. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 98(9), 1585–1602 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, Y., Yang, L.Z., Gao, Y.: Bending analysis of laminated two-dimensional piezoelectric quasicrystal plates with functionally graded material properties. Acta Phys. Pol., A 135(3), 426–433 (2019)

    Article  Google Scholar 

  16. Mishra, S.K.: Finite element analysis of composite laminates. Sci. Rep. 4(1), 50–50 (2012)

    Google Scholar 

  17. Wright, L., Robinson, S.P., Humphrey, V.F.: Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system. J. Acoust. Soc. Am. 125(3), 1374–1383 (2009)

    Article  Google Scholar 

  18. Lü, C.F., Chen, W.Q., Shao, J.W.: Semi-analytical three-dimensional elasticity solutions for generally laminated composite plates. Eur. J. Mech. A-Solids 27(5), 899–917 (2008)

    Article  MATH  Google Scholar 

  19. Wang, X.W.: Differential quadrature in the analysis of structural components. Adv. Mech. 25(2), 232–240 (1995)

    MATH  Google Scholar 

  20. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10(1), 40–52 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou, Y.Y., Chen, W.Q., Lü, C.F., et al.: Free vibration of cross-ply piezoelectric laminates in cylindrical bending with arbitrary edges. Compos. Struct. 87(1), 93–100 (2009)

    Article  Google Scholar 

  22. Zhou, Y.Y., Chen, W.Q., Lü, C.F.: Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections. Compos. Struct. 92(4), 1009–1018 (2010)

    Article  Google Scholar 

  23. Kamali, F., Shahabian, F.: Analytical solutions for surface stress effects on buckling and post-buckling behavior of thin symmetric porous nano-plates resting on elastic foundation. Arch. Appl. Mech. 91(6), 2853–2880 (2021)

    Article  Google Scholar 

  24. Chilton, D.S., Wekezer, J.W.: Plates on elastic foundation. J. Struct. Eng. 116(11), 3236–3241 (1992)

    Article  Google Scholar 

  25. Yas, M.H., Jodaei, A., Irandoust, S., et al.: Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica 47(6), 1401–1423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yas, M.H., Moloudi, N.: Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method. Appl. Math. Mech. Engl. Ed. 36(4), 439–464 (2015)

    Article  MathSciNet  Google Scholar 

  27. Malekzadeh, P.: Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Compos. Struct. 89(3), 367–373 (2009)

    Article  Google Scholar 

  28. Çerdik, Y.H.: Deriving fundamental solutions for equations of elastodynamics in three-dimensional cubic quasicrystals. Acta Phys. Pol. A 136(3), 474–478 (2019)

    Article  Google Scholar 

  29. Feng, X., Fan, X.Y., Li, Y., et al.: Static response and free vibration analysis for cubic quasicrystal laminates with imperfect interfaces. Eur. J. Mech. A. Solids 90(14), 104365 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, C.Z., Wang, R.H., Ding, D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63(1), 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  31. Li, Y., Yang, L.Z., Zhang, L.L., et al.: Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates. Mech. Adv. Mater. Struct. 28(12), 1216–1226 (2021)

    Article  Google Scholar 

  32. Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)

    Book  MATH  Google Scholar 

  33. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  34. Hu, C.Z., Wang, R.H., Ding, D.H., et al.: Piezoelectric effects in quasicrystals. Phys. Rev. B 56(5), 2463–2468 (1997)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 11972365, 12102458, and 11972354) and China Agricultural University Education Foundation (Grant Number 1101-240001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangliang Zhang or Yang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Some parameters

$$\begin{aligned} & a_{1} = C_{44}^{0} K_{44}^{0} - R_{3}^{0} R_{3}^{0} ,\quad a_{2} = C_{44}^{0} ,\quad a_{3} = R_{3}^{0} ,\quad a_{4} = K_{44}^{0} ,\quad a_{5} = \frac{{C_{11}^{0} }}{{C_{11}^{0} K_{11}^{0} - R_{1}^{0} R_{1}^{0} }},\quad a_{6} = C_{11}^{0} K_{11}^{0} - R_{1}^{0} R_{1}^{0} , \\ & a_{7} = C_{11}^{0} R_{2}^{0} R_{2}^{0} + C_{12}^{0} C_{12}^{0} K_{11}^{0} - 2C_{12}^{0} R_{1}^{0} R_{2}^{0} ,\quad a_{8} = - C_{11}^{0} + \frac{{a_{7} }}{{a_{6} }},\quad a_{9} = - C_{12}^{0} - C_{44}^{0} + \frac{{a_{7} }}{{a_{6} }}, \\ & a_{10} = C_{11}^{0} K_{12}^{0} R_{2}^{0} - C_{12}^{0} R_{1}^{0} K_{12}^{0} + C_{12}^{0} R_{2}^{0} K_{11}^{0} - R_{1}^{0} R_{2}^{0} R_{2}^{0} ,\quad a_{11} = \frac{{a_{10} }}{{a_{6} }} - R_{1}^{0} ,a_{12} = \frac{{a_{10} }}{{a_{6} }} - R_{2}^{0} - R_{3}^{0} , \\ & a_{13} = - C_{12}^{0} K_{11}^{0} + R_{1}^{0} R_{2}^{0} ,a_{14} = - C_{11}^{0} R_{2}^{0} + C_{12}^{0} R_{1}^{0} ,\quad a_{15} = C_{11}^{0} K_{12}^{0} K_{12}^{0} - 2K_{12}^{0} R_{1}^{0} R_{2}^{0} + K_{11}^{0} R_{2}^{0} R_{2}^{0} , \\ & a_{16} = - K_{11}^{0} + \frac{{a_{15} }}{{a_{6} }},\quad a_{17} = - K_{12}^{0} - K_{44}^{0} + \frac{{a_{15} }}{{a_{6} }},\quad a_{18} = - K_{11}^{0} R_{2}^{0} + K_{12}^{0} R_{1}^{0} ,\quad a_{19} = - C_{11}^{0} K_{12}^{0} + R_{1}^{0} R_{2}^{0} , \\ & a_{20} = \frac{{K_{11}^{0} }}{{a_{6} }},\quad a_{21} = - \frac{{R_{1}^{0} }}{{a_{6} }},\quad b_{1} = a_{8} \frac{{\partial^{2} }}{{\partial x^{2} }} - a_{2} \frac{{\partial^{2} }}{{\partial y^{2} }},\quad b_{2} = a_{16} \frac{{\partial^{2} }}{{\partial x^{2} }} - a_{4} \frac{{\partial^{2} }}{{\partial y^{2} }}. \\ \end{aligned}$$
(A.1)

1.2 State equations for SSSS

$$\begin{aligned} \frac{{{\text{d}}\tilde{u}_{{xr}} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{{xzr}} - \frac{{a_{3} }}{{a_{1} }}\tilde{H}_{{xzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{u}_{{yr}} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{{yzr}} {\text{ + }}\frac{{a_{4} }}{{a_{1} }}\tilde{H}_{{yzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{u}_{{zr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{xr}} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{{xzr}} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{{xzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{yr}} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{{yzr}} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{{yzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{w}_{{zr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{zzr}} }}{{{\text{d}}z}} & = - \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{xzr}} } + q\tilde{\sigma }_{{yzr}} - a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{zk}} } - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{zzr}} }}{{{\text{d}}z}} & = - \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{xzr}} } + q\tilde{H}_{{yzr}} - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{zk}} } - a_{4} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{xzr}} }}{{{\text{d}}z}} & = a_{8} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{xk}} } + a_{2} q^{2} \tilde{u}_{{xr}} - \frac{{a_{7} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{xk}} } - a_{9} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{yk}} } + a_{{11}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{xk}} } + a_{3} q^{2} \tilde{w}_{{xr}} \\ & \quad - \frac{{a_{{10}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{xk}} } - a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{yk}} } + \frac{{a_{{13}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{zzk}} } + \frac{{a_{{14}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{zzk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{yzr}} }}{{{\text{d}}z}} & = a_{9} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{yk}} } - a_{8} q^{2} \tilde{u}_{{yr}} + a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } \\ & \quad - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{yk}} } - a_{{11}} q^{2} \tilde{w}_{{yr}} + \frac{{a_{{13}} }}{{a_{6} }}q\tilde{\sigma }_{{zzr}} + \frac{{a_{{14}} }}{{a_{6} }}q\tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{xzr}} }}{{{\text{d}}z}} & = a_{{11}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{xk}} } + a_{3} q^{2} \tilde{u}_{{xr}} - \frac{{a_{{10}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{xk}} } - a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{yk}} } + a_{{16}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{xk}} } + a_{4} q^{2} \tilde{w}_{{xr}} \\ & \quad - \frac{{a_{{15}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{xk}} } - a_{{17}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{yk}} } + \frac{{a_{{18}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{zzk}} } + \frac{{a_{{19}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{zzk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{yzr}} }}{{{\text{d}}z}} & = a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{yk}} } - a_{{11}} q^{2} \tilde{u}_{{yr}} + a_{{17}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - a_{4} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{yk}} } \\ & \quad - a_{{16}} q^{2} \tilde{w}_{{yr}} + \frac{{a_{{18}} }}{{a_{6} }}q\tilde{\sigma }_{{zzr}} + \frac{{a_{{19}} }}{{a_{6} }}q\tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{u}_{{zr}} }}{{{\text{d}}z}} & = \frac{{a_{{13}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - \frac{{a_{{13}} }}{{a_{6} }}q\tilde{u}_{{yr}} + \frac{{a_{{18}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - \frac{{a_{{18}} }}{{a_{6} }}q\tilde{w}_{{yr}} + a_{{20}} \tilde{\sigma }_{{zzr}} + a_{{21}} \tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{zr}} }}{{{\text{d}}z}} & = \frac{{a_{{14}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - \frac{{a_{{14}} }}{{a_{6} }}q\tilde{u}_{{yr}} + \frac{{a_{{19}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - \frac{{a_{{19}} }}{{a_{6} }}q\tilde{w}_{{yr}} + a_{{21}} \tilde{\sigma }_{{zzr}} + a_{5} \tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right). \\ \end{aligned}$$
(A.2)

1.3 State equations for CSCS

$$\begin{aligned} \frac{{{\text{d}}\tilde{u}_{{xr}} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{{xzr}} - \frac{{a_{3} }}{{a_{1} }}\tilde{H}_{{xzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{u}_{{yr}} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{{yzr}} {\text{ + }}\frac{{a_{4} }}{{a_{1} }}\tilde{H}_{{yzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{u}_{{zr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{xr}} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{{xzr}} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{{xzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{yr}} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{{yzr}} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{{yzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{w}_{{zr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{zzr}} }}{{{\text{d}}z}} & = - \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{xzr}} } + q\tilde{\sigma }_{{yzr}} - a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{zk}} } - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{zzr}} }}{{{\text{d}}z}} & = - \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{xzr}} } + q\tilde{H}_{{yzr}} - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{zk}} } - a_{4} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{xzr}} }}{{{\text{d}}z}} & = a_{8} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{xk}} } + a_{2} q^{2} \tilde{u}_{{xr}} - \frac{{a_{7} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{xk}} } - a_{9} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{yk}} } + a_{{11}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{xk}} } + a_{3} q^{2} \tilde{w}_{{xr}} \\ & \quad - \frac{{a_{{10}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{xk}} } - a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{yk}} } + \frac{{a_{{13}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{zzk}} } + \frac{{a_{{14}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{zzk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{yzr}} }}{{{\text{d}}z}} & = a_{9} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{yk}} } - a_{8} q^{2} \tilde{u}_{{yr}} + a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } \\ & \quad - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{yk}} } - a_{{11}} q^{2} \tilde{w}_{{yr}} + \frac{{a_{{13}} }}{{a_{6} }}q\tilde{\sigma }_{{zzr}} + \frac{{a_{{14}} }}{{a_{6} }}q\tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{xzr}} }}{{{\text{d}}z}} & = a_{{11}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{xk}} } + a_{3} q^{2} \tilde{u}_{{xr}} - \frac{{a_{{10}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{u}_{{xk}} } - a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{yk}} } + a_{{16}} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{xk}} } + a_{4} q^{2} \tilde{w}_{{xr}} \\ & \quad - \frac{{a_{{15}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {f_{{rk}}^{{}} \tilde{w}_{{xk}} } - a_{{17}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{yk}} } + \frac{{a_{{18}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{zzk}} } + \frac{{a_{{19}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{zzk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{yzr}} }}{{{\text{d}}z}} & = a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{yk}} } - a_{{11}} q^{2} \tilde{u}_{{yr}} + a_{{17}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - a_{4} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{yk}} } \\ & \quad - a_{{16}} q^{2} \tilde{w}_{{yr}} + \frac{{a_{{18}} }}{{a_{6} }}q\tilde{\sigma }_{{zzr}} + \frac{{a_{{19}} }}{{a_{6} }}q\tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{u}_{{zr}} }}{{{\text{d}}z}} & = \frac{{a_{{13}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - \frac{{a_{{13}} }}{{a_{6} }}q\tilde{u}_{{yr}} + \frac{{a_{{18}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - \frac{{a_{{18}} }}{{a_{6} }}q\tilde{w}_{{yr}} + a_{{20}} \tilde{\sigma }_{{zzr}} + a_{{21}} \tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{zr}} }}{{{\text{d}}z}} & = \frac{{a_{{14}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - \frac{{a_{{14}} }}{{a_{6} }}q\tilde{u}_{{yr}} + \frac{{a_{{19}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - \frac{{a_{{19}} }}{{a_{6} }}q\tilde{w}_{{yr}} + a_{{21}} \tilde{\sigma }_{{zzr}} + a_{5} \tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right). \\ \end{aligned}$$
(A.3)

1.4 State equations for CSSS

$$\begin{aligned} \frac{{{\text{d}}\tilde{u}_{{xr}} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{{xzr}} - \frac{{a_{3} }}{{a_{1} }}\tilde{H}_{{xzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{zk}} } \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{u}_{{yr}} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{{yzr}} {\text{ + }}\frac{{a_{4} }}{{a_{1} }}\tilde{H}_{{yzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{u}_{{zr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{xr}} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{{xzr}} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{{xzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{zk}} } \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{w}_{{yr}} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{{yzr}} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{{yzr}} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{w}_{{zr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{zzr}} }}{{{\text{d}}z}} & = - \sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{xzr}} } + q\tilde{\sigma }_{{yzr}} - a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{1rk}}^{{}} \tilde{u}_{{zk}} } - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{1rk}}^{{}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{zzr}} }}{{{\text{d}}z}} & = - \sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{H}_{{xzr}} } + q\tilde{H}_{{yzr}} - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{1rk}}^{{}} \tilde{u}_{{zk}} } - a_{4} \sum\limits_{{k = 2}}^{{N - 1}} {f_{{1rk}}^{{}} \tilde{w}_{{zk}} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{xzr}} }}{{{\text{d}}z}} & = a_{8} \sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(2)}} \tilde{u}_{{xk}} } + a_{2} q^{2} \tilde{u}_{{xr}} - \frac{{a_{7} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {f_{{1rk}} \tilde{u}_{{xk}} } - a_{8} \sum\limits_{{k = 2}}^{N} {f_{{Nrk}} \tilde{u}_{{xk}} } - a_{9} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{yk}} } \\ & \quad + a_{{11}} \sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(2)}} \tilde{w}_{{xk}} } + a_{3} q^{2} \tilde{w}_{{xr}} - \frac{{a_{{10}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {f_{{1rk}} \tilde{w}_{{xk}} } - a_{{11}} \sum\limits_{{k = 2}}^{N} {f_{{Nrk}} \tilde{w}_{{xk}} } - a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{yk}} } \\ & \quad + \frac{{a_{{13}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{zzk}} } + \frac{{a_{{14}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{zzk}} } \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{{yzr}} }}{{{\text{d}}z}} & = a_{9} q\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - a_{2} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{yk}} } - a_{8} q^{2} \tilde{u}_{{yr}} + a_{{12}} q\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } \\ & \quad - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{yk}} } - a_{{11}} q^{2} \tilde{w}_{{yr}} + \frac{{a_{{13}} }}{{a_{6} }}q\tilde{\sigma }_{{zzr}} + \frac{{a_{{14}} }}{{a_{6} }}q\tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{{xzr}} }}{{{\text{d}}z}} & = a_{{11}} \sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(2)}} \tilde{u}_{{xk}} } + a_{3} q^{2} \tilde{u}_{{xr}} - \frac{{a_{{10}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {f_{{1rk}} \tilde{u}_{{xk}} } - a_{{11}} \sum\limits_{{k = 2}}^{N} {f_{{Nrk}} \tilde{u}_{{xk}} } - a_{{12}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{u}_{{yk}} } + a_{{16}} \sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(2)}} \tilde{w}_{{xk}} } \\ & \quad + a_{4} q^{2} \tilde{w}_{{xr}} - \frac{{a_{{15}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {f_{{1rk}} \tilde{w}_{{xk}} } - a_{{16}} \sum\limits_{{k = 2}}^{N} {f_{{Nrk}} \tilde{w}_{{xk}} } - a_{{17}} q\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{w}_{{yk}} } + \frac{{a_{{18}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{\sigma }_{{zzk}} } \\ & \quad + \frac{{a_{{19}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(1)}} \tilde{H}_{{zzk}} } \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{H}_{{yzr}} }}{{{\text{d}}z}} & = a_{{12}} q\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - a_{3} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{u}_{{yk}} } - a_{{11}} q^{2} \tilde{u}_{{yr}} + a_{{17}} q\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - a_{4} \sum\limits_{{k = 2}}^{{N - 1}} {X_{{rk}}^{{(2)}} \tilde{w}_{{yk}} } \\ & \quad - a_{{16}} q^{2} \tilde{w}_{{yr}} + \frac{{a_{{18}} }}{{a_{6} }}q\tilde{\sigma }_{{zzr}} + \frac{{a_{{19}} }}{{a_{6} }}q\tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{u}_{{zr}} }}{{{\text{d}}z}} & = \frac{{a_{{13}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - \frac{{a_{{13}} }}{{a_{6} }}q\tilde{u}_{{yr}} + \frac{{a_{{18}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - \frac{{a_{{18}} }}{{a_{6} }}q\tilde{w}_{{yr}} + a_{{20}} \tilde{\sigma }_{{zzr}} + a_{{21}} \tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{{zr}} }}{{{\text{d}}z}} & = \frac{{a_{{14}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{u}_{{xk}} } - \frac{{a_{{14}} }}{{a_{6} }}q\tilde{u}_{{yr}} + \frac{{a_{{19}} }}{{a_{6} }}\sum\limits_{{k = 2}}^{N} {X_{{rk}}^{{(1)}} \tilde{w}_{{xk}} } - \frac{{a_{{19}} }}{{a_{6} }}q\tilde{w}_{{yr}} + a_{{21}} \tilde{\sigma }_{{zzr}} + a_{5} \tilde{H}_{{zzr}} \left( {2 \le r \le N - 1} \right), \\ \end{aligned}$$
(A.4)

with \(f_{1rk} = X_{r1}^{(1)} X_{1k}^{(1)} , \, f_{Nrk} = X_{rN}^{(1)} X_{Nr}^{(1)} , \, f_{rk} = f_{1rk} + f_{Nrk} .\)

1.5 State equations for CSFS

$$\begin{aligned} \frac{{{\text{d}}\tilde{u}_{xr} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{xzr} - \frac{{a_{3} }}{{a_{1} }}\tilde{H}_{xzr} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{u}_{zk} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{u}_{yr} }}{{{\text{d}}z}} & = \frac{{a_{4} }}{{a_{1} }}\tilde{\sigma }_{yzr} { + }\frac{{a_{4} }}{{a_{1} }}\tilde{H}_{yzr} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{u}_{zr} \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{w}_{xr} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{xzr} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{xzr} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{w}_{zk} } \left( {2 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{w}_{yr} }}{{{\text{d}}z}} & = - \frac{{a_{3} }}{{a_{1} }}\tilde{\sigma }_{yzr} + \frac{{a_{2} }}{{a_{1} }}\tilde{H}_{yzr} + \left( {\frac{{a_{3}^{2} - a_{2} a_{4} }}{{a_{1} }}} \right)q\tilde{w}_{zr} \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{zzr} }}{{{\text{d}}z}} & = - \sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{\sigma }_{xzr} } + q{\mathbf{E}}_{1} \tilde{\sigma }_{yzr} - a_{2} \sum\limits_{k = 2}^{N} {f_{1rk}^{{}} \tilde{u}_{zk} } - a_{3} \sum\limits_{k = 2}^{N} {f_{1rk}^{{}} \tilde{w}_{zk} } \left( {1 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{H}_{zzr} }}{{{\text{d}}z}} & = - \sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{H}_{xzr} } + q{\mathbf{E}}_{1} \tilde{H}_{yzr} - a_{3} \sum\limits_{k = 2}^{N} {f_{1rk}^{{}} \tilde{u}_{zk} } - a_{4} \sum\limits_{k = 2}^{N} {f_{1rk}^{{}} \tilde{w}_{zk} } \left( {1 \le r \le N - 1} \right), \\ \frac{{{\text{d}}\tilde{\sigma }_{xzr} }}{{{\text{d}}z}} & = a_{8} \sum\limits_{k = 2}^{N - 1} {X_{rk}^{(2)} \tilde{u}_{xk} } + a_{2} q^{2} \tilde{u}_{xr} - \frac{{a_{7} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {f_{1rk} \tilde{u}_{xk} } - \left( {\frac{{a_{13} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{4} }}{{a_{6} c_{1} }}} \right)\sum\limits_{k = 2}^{N - 1} {f_{Nrk} \tilde{u}_{xk} } - a_{9} q\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{u}_{yk} } \\ & \quad + \left( {\frac{{a_{13} c_{3} }}{{a_{6} }} + \frac{{a_{14} c_{5} }}{{a_{6} }}} \right)q{\mathbf{E}}_{6} \tilde{u}_{yr} - \frac{{a_{8} }}{q}\sum\limits_{k = 2}^{N} {F_{Nrk} \tilde{u}_{yk} } + \frac{{a_{7} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {\overline{F}_{Nrk} \tilde{u}_{yk} } + \left( {\frac{{a_{13} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{4} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}\sum\limits_{k = 2}^{N} {\overline{\overline{F}}_{Nrk} \tilde{u}_{yk} } \\ & \quad + a_{11} \sum\limits_{k = 2}^{N - 1} {X_{rk}^{(2)} \tilde{w}_{xk} } + a_{3} q^{2} \tilde{w}_{xr} - \frac{{a_{10} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {f_{1rk} \tilde{w}_{xk} } - \left( {\frac{{a_{13} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{6} }}{{a_{6} c_{1} }}} \right)\sum\limits_{k = 2}^{N - 1} {f_{Nrk} \tilde{w}_{xk} } - a_{12} q\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{w}_{yk} } \\ & \quad + \left( {\frac{{a_{13} c_{5} }}{{a_{6} }} + \frac{{a_{14} c_{7} }}{{a_{6} }}} \right)q{\mathbf{E}}_{6} \tilde{w}_{yr} - \frac{{a_{11} }}{q}\sum\limits_{k = 2}^{N} {F_{Nrk} \tilde{w}_{yk} } + \frac{{a_{10} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {\overline{F}_{Nrk} \tilde{w}_{yk} } + \left( {\frac{{a_{13} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{6} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}\sum\limits_{k = 2}^{N} {\overline{\overline{F}}_{Nrk} \tilde{w}_{yk} } \\ & \quad + \frac{{a_{13} }}{{a_{6} }}\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{\sigma }_{zzk} } + \frac{{a_{14} }}{{a_{6} }}\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{H}_{zzk} } \left( {2 \le r \le N - 1} \right), \\ \end{aligned}$$
(A5)
$$\begin{aligned} \frac{{{\text{d}}\tilde{\sigma }_{yzr} }}{{{\text{d}}z}} & = a_{9} q\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{u}_{xk} } - \left( {\frac{{a_{13} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{4} }}{{a_{6} c_{1} }}} \right)q{\mathbf{E}}_{4} \tilde{u}_{xr} - a_{2} \sum\limits_{k = 2}^{N} {X_{rk}^{(2)} \tilde{u}_{yk} } - a_{8} q^{2} \tilde{u}_{yr} + (\frac{{a_{13} c_{3} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{5} }}{{a_{6} c_{1} }})q^{2} {\mathbf{E}}_{3} \tilde{u}_{yr} \\ & \quad - a_{9} \sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{u}_{yk} } + \left( {\frac{{a_{13} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{4} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{5} \tilde{u}_{yr} + a_{12} q\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{w}_{xk} } - \left( {\frac{{a_{13} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{6} }}{{a_{6} c_{1} }}} \right)q{\mathbf{E}}_{4} \tilde{w}_{xr} \\ & \quad - a_{3} \sum\limits_{k = 2}^{N} {X_{rk}^{(2)} \tilde{w}_{yk} } - a_{11} q^{2} \tilde{w}_{yr} + \left( {\frac{{a_{13} c_{5} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{7} }}{{a_{6} c_{1} }}} \right)q^{2} {\mathbf{E}}_{3} \tilde{w}_{yr} - a_{12} \sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{w}_{yk} } + \left( {\frac{{a_{13} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{14} c_{6} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{5} \tilde{w}_{yr} \\ & \quad + \frac{{a_{13} }}{{a_{6} }}q{\mathbf{E}}_{2} \tilde{\sigma }_{zzr} + \frac{{a_{14} }}{{a_{6} }}q{\mathbf{E}}_{2} \tilde{H}_{zzr} \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{H}_{xzr} }}{{{\text{d}}z}} & = a_{11} \sum\limits_{k = 2}^{N - 1} {X_{rk}^{(2)} \tilde{u}_{xk} } + a_{3} q^{2} \tilde{u}_{xr} - \frac{{a_{10} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {f_{1rk} \tilde{u}_{xk} } - \left( {\frac{{a_{18} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{4} }}{{a_{6} c_{1} }}} \right)\sum\limits_{k = 2}^{N - 1} {f_{Nrk} \tilde{u}_{xk} } - a_{12} q\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{u}_{yk} } \\ & \quad + \left( {\frac{{a_{18} c_{3} }}{{a_{6} }} + \frac{{a_{19} c_{5} }}{{a_{6} }}} \right)q{\mathbf{E}}_{6} \tilde{u}_{yr} - \frac{{a_{11} }}{q}\sum\limits_{k = 2}^{N} {F_{Nrk} \tilde{u}_{yk} } + \frac{{a_{10} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {\overline{F}_{Nrk} \tilde{u}_{yk} } + \left( {\frac{{a_{18} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{4} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}\sum\limits_{k = 2}^{N} {\overline{\overline{F}}_{Nrk} \tilde{u}_{yk} } \\ \, & \quad \, + a_{16} \sum\limits_{k = 2}^{N - 1} {X_{rk}^{(2)} \tilde{w}_{xk} } + a_{4} q^{2} \tilde{w}_{xr} - \frac{{a_{15} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {f_{1rk} \tilde{w}_{xk} } - \left( {\frac{{a_{18} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{6} }}{{a_{6} c_{1} }}} \right)\sum\limits_{k = 2}^{N - 1} {f_{Nrk} \tilde{w}_{xk} } - a_{17} q\sum\limits_{k = 2}^{N} {X_{rk}^{(1)} \tilde{w}_{yk} } \\ \, & \quad \, + \left( {\frac{{a_{18} c_{5} }}{{a_{6} }} + \frac{{a_{19} c_{7} }}{{a_{6} }}} \right)q{\mathbf{E}}_{6} \tilde{w}_{yr} - \frac{{a_{16} }}{q}\sum\limits_{k = 2}^{N} {F_{Nrk} \tilde{w}_{yk} } + \frac{{a_{15} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {\overline{F}_{Nrk} \tilde{w}_{yk} } + \left( {\frac{{a_{18} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{6} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}\sum\limits_{k = 2}^{N} {\overline{\overline{F}}_{Nrk} \tilde{w}_{yk} } \\ \, & \quad \, + \frac{{a_{18} }}{{a_{6} }}\sum\limits_{k = 1}^{N - 1} {X_{rk}^{(1)} \tilde{\sigma }_{zzk} } + \frac{{a_{19} }}{{a_{6} }}\sum\limits_{k = 1}^{N - 1} {X_{rk}^{(1)} \tilde{H}_{zzk} } \left( {2 \le r \le N - 1} \right), \\ \end{aligned}$$
$$\begin{aligned} \frac{{{\text{d}}\tilde{H}_{yzr} }}{{{\text{d}}z}} & = a_{12} q\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{u}_{xk} } - \left( {\frac{{a_{18} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{4} }}{{a_{6} c_{1} }}} \right)q{\mathbf{E}}_{4} \tilde{u}_{xr} - a_{3} \sum\limits_{k = 2}^{N} {X_{rk}^{(2)} \tilde{u}_{yk} } - a_{11} q^{2} \tilde{u}_{yr} + \left( {\frac{{a_{18} c_{3} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{5} }}{{a_{6} c_{1} }}} \right)q^{2} {\mathbf{E}}_{3} \tilde{u}_{yr} \\ \, & \quad - a_{12} \sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{u}_{yk} } + \left( {\frac{{a_{18} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{4} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{5} \tilde{u}_{yr} + a_{17} q\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{w}_{xk} } - \left( {\frac{{a_{18} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{6} }}{{a_{6} c_{1} }})} \right)q{\mathbf{E}}_{4} \tilde{w}_{xr} \\ \, & \quad \, - a_{4} \sum\limits_{k = 2}^{N} {X_{rk}^{(2)} \tilde{w}_{yk} } - a_{16} q^{2} \tilde{w}_{yr} + \left( {\frac{{a_{18} c_{5} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{7} }}{{a_{6} c_{1} }}} \right)q^{2} {\mathbf{E}}_{3} \tilde{w}_{yr} - a_{17} \sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{w}_{yk} } \\ \, & \quad + \left( {\frac{{a_{18} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{19} c_{6} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{5} \tilde{w}_{yr} + \frac{{a_{18} }}{{a_{6} }}q{\mathbf{E}}_{2} \tilde{\sigma }_{zzr} + \frac{{a_{19} }}{{a_{6} }}q{\mathbf{E}}_{2} \tilde{H}_{zzr} \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{u}_{zr} }}{{{\text{d}}z}} & = \frac{{a_{13} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{u}_{xk} } - \left( {\frac{{a_{20} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{21} c_{4} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{4} \tilde{u}_{xr} - \frac{{a_{13} }}{{a_{6} }}q\tilde{u}_{yr} + \left( {\frac{{a_{20} c_{3} }}{{a_{6} c_{1} }} + \frac{{a_{21} c_{5} }}{{a_{6} c_{1} }}} \right)q{\mathbf{E}}_{3} \tilde{u}_{yr} - \frac{{a_{13} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{u}_{yk} } \\ \, & \quad + \left( {\frac{{a_{18} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{21} c_{4} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}{\mathbf{E}}_{5} \tilde{u}_{yr} + \frac{{a_{18} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{w}_{xk} } - \left( {\frac{{a_{20} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{21} c_{6} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{4} \tilde{w}_{xr} - \frac{{a_{18} }}{{a_{6} }}q\tilde{w}_{yr} \\ \, & \quad + \left( {\frac{{a_{20} c_{5} }}{{a_{6} c_{1} }} + \frac{{a_{21} c_{7} }}{{a_{6} c_{1} }}} \right)q{\mathbf{E}}_{3} \tilde{w}_{yr} - \frac{{a_{18} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{w}_{yk} } + \left( {\frac{{a_{20} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{21} c_{6} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}{\mathbf{E}}_{5} \tilde{w}_{yr} \\ \, & \quad + a_{20} {\mathbf{E}}_{2} \tilde{\sigma }_{zzr} + a_{21} {\mathbf{E}}_{2} \tilde{H}_{zzr} \left( {2 \le r \le N} \right), \\ \frac{{{\text{d}}\tilde{w}_{zr} }}{{{\text{d}}z}} & = \frac{{a_{14} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{u}_{xk} } - \left( {\frac{{a_{21} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{5} c_{4} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{4} \tilde{u}_{xr} - \frac{{a_{14} }}{{a_{6} }}q\tilde{u}_{yr} + \left( {\frac{{a_{21} c_{3} }}{{a_{6} c_{1} }} + \frac{{a_{5} c_{5} }}{{a_{6} c_{1} }}} \right)q{\mathbf{E}}_{3} \tilde{u}_{yr} \\ \, & \quad - \frac{{a_{14} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{u}_{yk} } + \left( {\frac{{a_{21} c_{2} }}{{a_{6} c_{1} }} + \frac{{a_{5} c_{4} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}{\mathbf{E}}_{5} \tilde{u}_{yr} + \frac{{a_{19} }}{{a_{6} }}\sum\limits_{k = 2}^{N - 1} {X_{rk}^{(1)} \tilde{w}_{xk} } - \left( {\frac{{a_{21} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{5} c_{6} }}{{a_{6} c_{1} }}} \right){\mathbf{E}}_{4} \tilde{w}_{xr} \\ \, & \quad - \frac{{a_{19} }}{{a_{6} }}q\tilde{w}_{yr} + \left( {\frac{{a_{21} c_{5} }}{{a_{6} c_{1} }} + \frac{{a_{5} c_{7} }}{{a_{6} c_{1} }}} \right)q{\mathbf{E}}_{3} \tilde{w}_{yr} - \frac{{a_{18} }}{{a_{6} q}}\sum\limits_{k = 2}^{N} {f_{Nrk} \tilde{w}_{yk} } + \left( {\frac{{a_{21} c_{4} }}{{a_{6} c_{1} }} + \frac{{a_{5} c_{6} }}{{a_{6} c_{1} }}} \right)\frac{1}{q}{\mathbf{E}}_{5} \tilde{w}_{yr} \\ \, & \quad \, + a_{21} {\mathbf{E}}_{2} \tilde{\sigma }_{zzr} + a_{5} {\mathbf{E}}_{2} \tilde{H}_{zzr} \left( {2 \le r \le N} \right), \\ \end{aligned}$$

where

$$\begin{aligned} c_{1} & = C_{12}^{0} K_{12}^{0} - R_{2}^{0} R_{2}^{0} ,c_{2} = C_{11}^{0} C_{11}^{0} K_{12}^{0} - 2C_{11}^{0} R_{1}^{0} R_{2}^{0} - C_{12}^{0} (c_{1} + R_{1}^{0} R_{1}^{0} ),c_{3} = C_{11}^{0} - C_{12}^{0} , \\ c_{4} & = C_{11}^{0} R_{1}^{0} K_{12}^{0} + C_{12}^{0} R_{1}^{0} K_{11}^{0} - C_{11}^{0} R_{2}^{0} K_{11}^{0} - C_{12}^{0} R_{2}^{0} K_{12}^{0} - R_{1}^{0} R_{1}^{0} R_{2}^{0} + R_{2}^{0} R_{2}^{0} R_{2}^{0} ,c_{5} = R_{1}^{0} - R_{2}^{0} , \\ c_{6} & = C_{12}^{0} (K_{11}^{0} - K_{12}^{0} )(K_{11}^{0} + K_{12}^{0} ) - 2R_{1}^{0} R_{2}^{0} K_{11}^{0} + (R_{1}^{0} R_{1}^{0} + R_{2}^{0} R_{2}^{0} )K_{12}^{0} ,c_{7} = K_{11}^{0} - K_{12}^{0} , \\ \end{aligned}$$
(A6)
$$\begin{aligned} {\mathbf{E}}_{1} & = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & 0 \\ {{\mathbf{I}}_{(N - 2) \times (N - 2)} } & {\mathbf{0}} \\ \end{array} } \right],{\mathbf{E}}_{2} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{I}}_{(N - 2) \times (N - 2)} } \\ 0 & {\mathbf{0}} \\ \end{array} } \right],{\mathbf{E}}_{3} = \left[ {\begin{array}{*{20}c} {{\mathbf{0}}_{(N - 2) \times (N - 2)} } & {\mathbf{0}} \\ {\mathbf{0}} & 1 \\ \end{array} } \right], \\ {\mathbf{E}}_{4} & = \left[ {\begin{array}{*{20}c} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ {X_{N2}^{(1)} } & \cdots & {X_{N(N - 1)}^{(1)} } \\ \end{array} } \right],{\mathbf{E}}_{5} = \left[ {\begin{array}{*{20}c} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ {X_{NN}^{(1)} X_{N2}^{(1)} } & \cdots & {X_{NN}^{(1)} X_{NN}^{(1)} } \\ \end{array} } \right], \\ {\mathbf{E}}_{6} & = \left[ {\begin{array}{*{20}c} 0 & \cdots & 0 & {X_{N2}^{(1)} } \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & {X_{N(N - 1)}^{(1)} } \\ \end{array} } \right], \\ \end{aligned}$$
(A7)

with \(F_{Nrk} = X_{rN}^{(2)} X_{kN}^{(1)} ,\overline{F}_{Nrk} = f_{1rN}^{{}} X_{kN}^{(1)} ,\overline{\overline{F}}_{Nrk} = f_{NrN}^{{}} X_{kN}^{(1)} .\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Hu, Z., Zhang, H. et al. Semi-analytical solutions for functionally graded cubic quasicrystal laminates with mixed boundary conditions. Acta Mech 233, 2173–2199 (2022). https://doi.org/10.1007/s00707-022-03209-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03209-3

Navigation