Skip to main content
Log in

Buckling analysis of skew and circular stiffened plates using the Galerkin meshless method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the first-order shear deformation theory, a Galerkin meshless method for buckling analysis of skew and circular stiffened plates is proposed. A series of points is used to discretize the stiffened plate to establish the mesh-free model, in which the flat plate and stiffeners are combined by implementing the displacement compatibility conditions between them. The moving least-squares approximation (MLS) is employed to construct the shape functions and the displacement fields. The geometric stiffness matrix of the stiffened plate is derived based on the prestress distribution of the stiffened plate subjected to a partial edge loading. The equations governing the buckling behaviour of the structure are derived according to the principle of minimum potential energy. The stiffeners in the formulation can be set at any location on the flat plate, and the remeshing of the flat plate is naturally avoided when the stiffener location changes. Several numerical examples are calculated by the proposed method and compared with FEM results. The results show that the proposed method is accurate and efficient, and frees researchers from determining a nodal line on the plate along every stiffener.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Peng, L.X., Liew, K.M., Kitipornchai, S.: Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method. J. Sound Vib. 289(3), 421–449 (2006)

    Article  Google Scholar 

  2. Ma, H., Xiong, Q., Wang, D.: Experimental and numerical study on the ultimate strength of stiffened plates subjected to combined biaxial compression and lateral loads. Ocean Eng. 228, 108928 (2021)

    Article  Google Scholar 

  3. Liu, Z., Niu, J., Jia, R.: Dynamic analysis of arbitrarily restrained stiffened plate under moving loads. Int. J Mech. Sci. 200, 106414 (2021)

    Article  Google Scholar 

  4. Li, Y., Ren, X., Zhao, T., et al.: Dynamic response of stiffened plate under internal blast: Experimental and numerical investigation. Mar. Struct. 77, 102957 (2021)

    Article  Google Scholar 

  5. Schade, H.A., Washington, D.C.: The orthogonally stiffened plate under uniform lateral load. J. Appl Mech. 233, 468–469 (1941)

    Google Scholar 

  6. Kendrick, S.: The analysis of a flat plated grillage. Eur. Shipb. 5, 4–10 (1956)

    Google Scholar 

  7. Barik, M., Mukhopadhyay, M.: A new stiffened plate element for the analysis of arbitrary plates. Thin-Walled Struct. 40(7), 625–639 (2002)

    Article  Google Scholar 

  8. Tripathy, A.K., Pang, S.: Deflection and stress analysis of stiffened orthotropic skew panels under uniform transverse loading. Comp. Eng. 3(3), 195–208 (1993)

    Article  Google Scholar 

  9. Bhandari, N.C., Juneja, B.L., Pujara, K.K.: Free vibration and transient forced response of integrally stiffened skew plates on irregularly spaced elastic supports. J. Sound Vib. 64(4), 475–495 (1979)

    Article  MATH  Google Scholar 

  10. Naruoka, T.: Vibration of stiffened skew plates by using B-spline functions. Comput. Struct. 10, 821–826 (1979)

    Article  MATH  Google Scholar 

  11. York, C.B., Williams, F.W.: Theory and buckling results for infinitely wide, stiffened skew plate assemblies. Comp. Struct. 28(2), 189–200 (1994)

    Article  Google Scholar 

  12. Turvey, G.J., Avanessian, N.G.V.D.: Axisymmetric elasto-plastic large deflection response of ring stiffened circular plates. Int. J. Mech. Sci. 31(11/12), 905–924 (1989)

    Article  Google Scholar 

  13. Turvey, G.J., Salehi, M.: Elasto-plastic large deflection response of pressure loaded circular plates stiffened by a single diametral stiffener. Thin-Walled Struct. 46(7–9), 991–1002 (2008)

    Article  Google Scholar 

  14. Turvey, G.J., Avanessian, N.G.V.D.: Full-range response of clamped ring-stiffened circular steel plates-comparisons between experiment and theory. Comput. Struct. 37(1), 55–70 (1990)

    Article  Google Scholar 

  15. Golmakani, M.E., Mehrabian, M.: Nonlinear bending analysis of ring-stiffened circular and annular general angle-ply laminated plates with various boundary conditions. Mech. Res. Commun. 59, 42–50 (2014)

    Article  Google Scholar 

  16. Golmakani, M.E.: Nonlinear bending analysis of ring-stiffened functionally graded circular plates under mechanical and thermal loadings. Int. J. Mech. Sci. 79, 130–142 (2014)

    Article  Google Scholar 

  17. Shi, P., Kapania, R.K., Dong, C.Y.: Vibration and buckling analysis of curvilinearly stiffened plates using finite element method. AIAA J. 53(5), 1319–1335 (2015)

    Article  Google Scholar 

  18. Belytschko, T., Krysl, P., Krongauz, Y.: A three-dimensional explicit element-free Galerkin method. Int. J. Numer. Methods Fluids 24(12), 1253–1270 (1997)

    Article  MATH  Google Scholar 

  19. Liew, K.M., Lam, K.Y., Chow, S.T.: Free vibration analysis of rectangular plates using orthogonal plate function. Comput. Struct. 34, 79–85 (1990)

    Article  MATH  Google Scholar 

  20. Belytschko, T., Lu, Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tamijani, A.Y., Kapania, R.K.: Buckling and static analysis of curvilinearly stiffened plates using mesh-free method. J. Am. Inst. Aeron. Astron. 48(12), 2740–2751 (2010)

    Google Scholar 

  22. Zhang, X., Hu, W., Pan, X.F., Ming, W.: Meshless weighted least-square method. J. Mech. 04, 425–431 (2003)

    Google Scholar 

  23. Peng, L.X., Kitipornchai, S., Liew, K.M.: Analysis of rectangular stiffened plates under uniform lateral load based on FSDT and element-free Galerkin method. Int. J. Mech. Sci. 47(2), 251–276 (2005)

    Article  MATH  Google Scholar 

  24. Peng, L.X., Kitipornchai, S., Liew, K.M.: Free vibration analysis of folded plate structures by the FSDT mesh-free method. Comput. Mech. 39(6), 799–814 (2007)

    Article  MATH  Google Scholar 

  25. Liew, K.M., Peng, L.X., Ng, T.: Three-dimensional vibration analysis of spherical shell panels subjected to different boundary conditions. Int. J. Mech. Sci. 44, 2103–2117 (2002)

    Article  MATH  Google Scholar 

  26. Liew, K.M., Peng, L.X., Kitipornchai, S.: Buckling analysis of corrugated plates using a mesh-free Galerkin method based on the first-order shear deformation theory. Comput. Mech. 38, 61–75 (2006)

    Article  MATH  Google Scholar 

  27. Liew, K.M., Peng, L.X., Kitipornchai, S.: Buckling of folded plate structures subjected to partial in-plane edge loads by the FSDT meshfree Galerkin method. Int. J. Numer. Methods Eng. 65, 1495–1526 (2006)

    Article  MATH  Google Scholar 

  28. Zhang, X., Song, Z.K., Lu, M.W.: Research progress and application of meshless method. Chin. J. Comput. Mech. 06, 730–742 (2003)

    Google Scholar 

  29. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Mathem. Comput. 37(155), 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peng, L.X.: Elastic buckling analysis of folded plates using the moving-least square meshfree method. Int. Conf. Electr. Technol. Civ. Eng. 270–274 (2011)

  31. Peng, L.X., Tao, Y., Liang, N., et al.: Simulation of a crack in stiffened plates via a meshless formulation and FSDT. Int. J. Mech. Sci. 131–132, 880–893 (2017)

    Article  Google Scholar 

  32. Peng, L.X., Liew, K.M., Kitipornchai, S.: Bending analysis of folded laminated plates by the FSDT meshfree method. Proc. Eng. 14, 2714–2721 (2011)

    Article  Google Scholar 

  33. Peng, L.X., Kitipornchai, S., Liew, K.M.: Bending analysis of folded plates by the FSDT meshless method. Thin-Walled Struct. 44(11), 1138–1160 (2006)

    Article  Google Scholar 

  34. Zhang, X., Liu, Y., Ma, S.: Theory and application of meshless method. Adv. Mech. 39(01), 1–36 (2009)

    Google Scholar 

  35. Zhang, X., Lu, M., Wang, J.J.: Research progress of arbitrary Lagrangian-Eulerian description method. Chin. J. Comput. Mech. 01, 93–104 (1997)

    Google Scholar 

  36. Liu, W.K., Chen, Y., Jun, S., et al.: Overview and applications of the reproducing Kernel Particle methods. Arch. Comput. Methods Eng. 3(1), 3–80 (1996)

    Article  MathSciNet  Google Scholar 

  37. Liu, W.K., Chen, Y., Uras, R.A., et al.: Generalized multiple scale reproducing kernel particle method. Comput. Methods Appl. Mech. Eng. 139, 91–157 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, W.K., Chen, Y.: Wavelet and multiple scale reproducing kernel methods. Int. J. Numer. Methods Fluids 21(10), 901–931 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chang, C.T., Belytschko, T., Liu, W.K., et al.: Advances in multiple scale kernel particle methods. Comput. Mech. 18, 73–111 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Peng, L.X., Yan, S.T., Mo, G.K., et al.: Free vibration analysis of corrugated-core sandwich plates using a meshfree Galerkin method based on the first-order shear deformation theory. Int. J. Mech. Sci. 78, 8–18 (2014)

    Article  Google Scholar 

  42. Kumar, R., Mondal, S., Guchhait, S., et al.: Analytical approach for dynamic instability analysis of functionally graded skew plate under periodic axial compression. Int. J. Mech. Sci. 130, 41–51 (2017)

    Article  Google Scholar 

  43. Hassan, A.H.A., Kurgan, N.: Buckling of thin skew isotropic plate resting on Pasternak elastic foundation using extended Kantorovich method. Heliyon 6(6), e4236 (2020)

    Google Scholar 

  44. Hassan, A.H.A., Kurgan, N.: Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method. Eng. Sci. Technol. 23(4), 788–800 (2020)

    Google Scholar 

  45. Reddy, J.N., Ruocco, E., Loya, J.A., et al.: Theories and analyses of functionally graded circular plates. Compos. Part C: Open Access 5, 100166 (2021)

    Google Scholar 

  46. Reddy, J.N., Nampally, P., Phan, N.: Dual mesh control domain analysis of functionally graded circular plates accounting for moderate rotations. Compos. Struct. 257, 113153 (2021)

    Article  Google Scholar 

  47. Li, A., Ji, X., Zhou, S., et al.: Nonlinear axisymmetric bending analysis of strain gradient thin circular plate. Appl. Math. Modell. 89, 363–380 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rahmanian, M., Farsadi, T., Kurtaran, H.: Nonlinear flutter of tapered and skewed cantilevered plates with curvilinear fiber paths. J. Sound Vib. 500, 116021 (2021)

    Article  Google Scholar 

  49. Kumar, R., Banerjee, B., Ramachandra, L.S.: Nonlinear stability and dynamics of composite skew plates under nonuniform loadings using differential quadrature method. Mech. Res. Commun. 73, 76–90 (2016)

    Article  Google Scholar 

  50. Farsadi, T., Rahmanian, M., Kurtaran, H.: Nonlinear analysis of functionally graded skewed and tapered wing-like plates including porosities: a bifurcation study. Thin-Walled Struct. 160, 107341 (2021)

    Article  Google Scholar 

  51. Chatterjee, D., Ghosh, A., Chakravorty, D.: Nonlinear first ply failure study of laminated composite skew plates. Mater. Today Proc. 45, 4925–4930 (2021)

    Article  Google Scholar 

  52. Kiran, M.C., Kattimani, S.C.: Free vibration of multilayered magneto-electro-elastic plates with skewed edges using layer wise shear deformation theory. Mater. Today Proc. 5(10), 21248–21255 (2018)

    Article  Google Scholar 

  53. Kiani, Y.: Free vibration of FG-CNT reinforced composite skew plates. Aerosp. Sci. Technol. 58, 178–188 (2016)

    Article  Google Scholar 

  54. Roshanbakhsh, M.Z., Tavakkoli, S.M., Navayi, N.B.: Free vibration of functionally graded thick circular plates: an exact and three-dimensional solution. Int. J. Mech. Sci. 188, 105967 (2020)

    Article  Google Scholar 

  55. Vaghefi, R.: Three-dimensional temperature-dependent thermo-elastoplastic bending analysis of functionally graded skew plates using a novel meshless approach. Aerosp. Sci. Technol. 104, 1059 (2020)

    Article  Google Scholar 

  56. Adineh, M., Kadkhodayan, M.: Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation. Compos. Part B: Eng. 125, 227–240 (2017)

    Article  Google Scholar 

  57. Noguchi, H., Kawashima, T., Miyamura, T.: Element free analyses of shell and spatial structures. Int. J. Numer. Methods Eng. 47(6), 1215–1240 (2000)

    Article  MATH  Google Scholar 

  58. Kim, N.H., Choi, K.K., Chen, J.S., et al.: Meshfree analysis and design sensitivity analysis for shell structures. Int. J. Numer. Methods Eng. 53(9), 2087–2116 (2002)

    Article  MATH  Google Scholar 

  59. Costa, J.C., Tiago, C.M., Pimenta, P.M.: Meshless analysis of shear deformable shells: the linear model. Comput. Mech. 52(4), 763–778 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yoshida, K., Sadamoto, S., Setoyama, Y., et al.: Meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes of structural plates. J. Mar. Sci. Technol. 22(3), 501–512 (2017)

    Article  Google Scholar 

  61. Ozdemir, M., Sadamoto, S., Tanaka, S., et al.: Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces. Acta Mech. 229(12), 4995–5012 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Liew, K.M., Lee, Y.Y., Ng, T.Y., et al.: Dynamic stability analysis of composite laminated cylindrical panels via the mesh-free kp-Ritz method. Int. J. Mech. Sci. 49(10), 1156–1165 (2007)

    Article  Google Scholar 

  63. Zhao, X., Yang, Y., Liew, K.M.: Geometrically nonlinear analysis of cylindrical shells using the element-free kp-Ritz method. Eng. Anal. Bound. Elem. 31(9), 783–792 (2007)

    Article  MATH  Google Scholar 

  64. Maturi, D.A., Ferreira, A., Zenkour, A.M., et al.: Analysis of laminated shells by Murakami’s Zig-Zag theory and radial basis functions collocation. J. Appl. Math. 2013(1–2), 1–14 (2013)

    Article  MATH  Google Scholar 

  65. Kwak, S., Kim, K., Ri, Y., et al.: Natural frequency calculation of open laminated conical and cylindrical shells by a meshless method. Eur. Phys. J. Plus 135(6), 2020 (2020)

    Google Scholar 

  66. Ferreira, A., Carrera, E., Cinefra, M., et al.: A radial basis functions solution for the analysis of laminated doubly-curved shells by a Reissner-Mixed Variational Theorem. Mech. Compos. Mater. Struct. 23(9), 1068–1079 (2016)

    Article  Google Scholar 

  67. Dai, M., Tanaka, S., Sadamoto, S., et al.: Advanced reproducing kernel meshfree modeling of cracked curved shells for mixed-mode stress resultant intensity factors. Eng. Fract. Mech. 233, 107012 (2020)

    Article  Google Scholar 

  68. Sadamoto, S., Ozdemir, M., Tanaka, S., et al.: Finite rotation meshfree formulation for geometrically nonlinear analysis of flat, curved and folded shells. Int. J. Non-Linear Mech. 119, 103300 (2019)

    Article  Google Scholar 

  69. Ozdemir, M., Tanaka, S., Sadamoto, S., et al.: Numerical buckling analysis for flat and cylindrical shells including through crack employing effective reproducing kernel meshfree modeling. Eng. Anal. Bound. Elem. 2018(97), 55–66 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  70. Chen, W., Luo, W.M., Chen, S.Y., et al.: A FSDT meshfree method for free vibration analysis of arbitrary laminated composite shells and spatial structures. Compos. Struct. 279, 114763 (2022)

    Article  Google Scholar 

  71. Chen, J., Pan, C., Wu, C., et al.: Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 139(1), 195–227 (1961)

    MathSciNet  Google Scholar 

  72. Srivastava, A.K.L., Datta, P.K., Sheikh, A.H.: Buckling and vibration of stiffened plates subjected to partial edge loading. Int. J. Mech. Sci. 45(1), 73–93 (2003)

    Article  MATH  Google Scholar 

  73. Leissa, A.W., Ayoub, E.F.: Vibration and buckling of a simply supported rectangular plate subjected to a pair of in-plane concentrated forces. J. Sound Vibr. 127(1), 155–171 (1988)

    Article  MATH  Google Scholar 

  74. Ventsel, E., Krauthammer, T., Carrera, E.: Thin plates and shells: theory, analysis, and applications. Appl. Mech. Rev. 55(4), B72–B73 (2002)

    Article  Google Scholar 

  75. Magnucka-Blandzi, E., Magnucki, K., Stawecki, W.: Bending and buckling of a circular plate with symmetrically varying mechanical properties. Appl. Math. Modell. 89, 1198–1205 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper has been supported by grants awarded by the National Natural Science Foundation of China (Nos. 12162004 and 11562001), the National Key R&D Program of China (No. 2019YFC1511103), and the Guangxi Major Science and Technology Project (No. AA18118029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Xiang, J., He, X. et al. Buckling analysis of skew and circular stiffened plates using the Galerkin meshless method. Acta Mech 233, 1789–1817 (2022). https://doi.org/10.1007/s00707-022-03191-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03191-w

Navigation