Skip to main content
Log in

On the mechanics of strain localization in plasticity: isotropic and orthotropic, elasto- and rigid-plastic, associated and non-associated models

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

As strain localization is usually prognostics of localized failure in solids and structures, prediction of its occurrence and quantification of its adverse effects are of both theoretical and practical significance. Regarding plastic solids, onset of strain localization was presumed to be coincident with strain bifurcation, and the discontinuous bifurcation analysis was usually adopted to determine the discontinuity orientation though it does not apply to rigid-plastic solids. However, recent studies indicate that strain bifurcation and localization correspond to distinct stages of localized failure and should be dealt with separately. In this work, the mechanics of strain localization is addressed for perfect and softening plasticity in the most general context. Both isotropic and orthotropic, elasto- and rigid-plastic solids with associated and non-associated flow rules are analytically considered and numerically validated, extending our previous work on softening plasticity with associated evolution laws. In addition to Maxwell’s kinematics and continuity of the traction rate for strain bifurcation, a novel necessary condition, i.e., the stress rate objectivity (independent from the discontinuity bandwidth), and the resulting kinematic and static constraints, are derived for the occurrence of strain localization. In particular, the localization angles of the discontinuity band (surface) depend only on the specific stress state and the plastic flow tensor, irrespective from the material elastic constants and from the plastic yield function. Moreover, it is found that a transition stage generally exists in the case of plane strain during which the orientation of plastic flow rotates progressively such that strain localization may occur. Back-to-back numerical predictions of some benchmark problems, involving both perfect and softening plasticity, also justify the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Banabic, D., Kami, A., Comsa, D.-S.: Eyckens: developments of the marciniak-kuczynski model for sheet metal formability: a review. J, Mater. Process. Tech. 287, 116446 (2021)

    Article  Google Scholar 

  2. Benallal, A., Comi, C.: Localization analysis via a geometrical method. Int. J. Solids Struct. 33(1), 99–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benvenuti, E., Orlando, N.: A mesh-independent framework for crack tracking in elastodamaging materials through the regularized extended finite element method. Comput. Mech. 68, 25–49 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benvenuti, E., Orlando, N.: Modeling mixed mode cracking in concrete through a regularized extended finite element formulation considering aggregate interlock. Eng. Fract. Mech. 258, 108102 (2021)

    Article  Google Scholar 

  5. Benvenuti, E., Tralli, A., Ventura, G.: A regularized xfem model for the transition from continuous to discontinuous displacements. Int. J. Numer. Meth. Eng. 74(6), 911–944 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borré, G., Maier, G.: On linear versus nonlinear flow rules in strain localisation analysis. Meccanica 24, 36–41 (1989)

    Article  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. Cervera, M., Agelet de Saracibar, C., Chiumenti, M.: Comet: Coupled mechanical and thermal analysis. data input manual, version 5.0. Tech. Rep. Technical Report IT-308, CIMNE, Technical University of Catalonia, Available from: http://www.cimne.upc.es (2002)

  9. Cervera, M., Chiumenti, M.: Size effect and localization in \(j_{2}\) plasticity. Int. J. Solids Struct. 46, 3301–3312 (2009)

    Article  MATH  Google Scholar 

  10. Cervera, M., Chiumenti, M., Benedetti, L., Codina, R.: Mixed stabilized finite element methods in nonlinear solid mechanics. part iii: Compressible and incompressible plasticity. Comput. Methods Appl. Mech. Eng. 285, 752–775 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cervera, M., Chiumenti, M., de Saracibar, C.A.: Softening, localization and stabilization: capture of discontinuous solutions in j2 plasticity. Int. J. Numer. Anal. Methods Geomech. 28, 373–393 (2003)

    Article  MATH  Google Scholar 

  12. Cervera, M., Chiumenti, M., de Saracibar, C.A.: Shear band localization via local j2 continuum damage mechanics. Comput. Method Appl. Mech. Eng. 193, 849–880 (2004)

    Article  MATH  Google Scholar 

  13. Cervera, M., Chiumenti, M., Di Capua, D.: Benchmarking on bifurcation and localization in \(j_{2}\) plasticity for plane stress and plane strain conditions. Comput. Methods Appl. Mech. Eng. 241–244, 206–224 (2012)

    Article  MATH  Google Scholar 

  14. Cervera, M., Chiumenti, M., Valverde, Q., de Saracibar, C.A.: Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput. Methods Appl. Mech. Eng. 192, 5249–5263 (2003)

    Article  MATH  Google Scholar 

  15. Cervera, M., Wu, J.-Y., Chiumenti, M., Kim, S.: Strain localization analysis of hill’s orthotropic elastoplasticity: analytical results and numerical verification. Comput. Mech. 65, 533–554 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiumenti, M., Valverde, Q., de Saracibar, C.A., Cervera, M.: A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput. Methods Appl. Mech. Eng. 191, 5253–5264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chiumenti, M., Valverde, Q., de Saracibar, C.A., Cervera, M.: A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra. Int. J. Plast. 20, 1487–1504 (2004)

    Article  MATH  Google Scholar 

  18. CIMNE: Gid: The personal pre and post processor Available from: http://www.gidhome.com (2009)

  19. Codina, R.: Stabilization of impressibility and convection through orthogonal sub-scales in finite element methods. Comput. Method Appl. Mech. Eng. 190, 1579–1599 (2000)

    Article  MATH  Google Scholar 

  20. Codina, R., Blasco, J.: A finite element method for the stokes problem allowing equal velocity-pressure interpolations. Comput. Method Appl. Mech. Eng. 143, 373–391 (1997)

    Article  MATH  Google Scholar 

  21. Hencky, H.: Über einige statisch bestimmte fälle des gleichgewichts in plastischen körpern. Z. Angew. Math. Mech. 3, 241–251 (1923)

    Article  MATH  Google Scholar 

  22. Hencky, H.: Zur theorie plastischer deformationen und der hierdurch im material hervorgerufenen nachspannungen. Z. Angew. Math. Mech. 4, 323–334 (1924)

    Article  MATH  Google Scholar 

  23. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. A 193, 281–297 (1948)

    MathSciNet  MATH  Google Scholar 

  24. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, New York (1950)

    MATH  Google Scholar 

  25. Hill, R.: General theory of uniqueness and stability of elasto-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)

    Article  MATH  Google Scholar 

  26. Hill, R.: Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hughes, T.: Multiscale phenomena: Green’s function, dirichlet-to neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations. Comput. Method Appl. Mech. Eng. 127, 187–401 (1995)

    Article  Google Scholar 

  28. Hughes, T., Feijoó, G., Mazzei, L., Quincy, J.: The variational multiscale method: a paradigm for computational mechanics. Comput. Method Appl. Mech. Eng. 166, 3–28 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, S., Cervera, M., Wu, J.Y., Chiumenti, M.: Strain localization of orthotropic elasto-plastic cohesive-frictional materials: analytical results and numerical verification. Materials 14(8), 2040 (2021)

    Article  Google Scholar 

  30. Li, M., Füssl, J., Lukacevic, M., Eberhardsteiner, J.: A numerical upper bound formulation with sensibly-arranged velocity discontinuities and orthotropic material strength behavior. J. Theor. Appl. Mech. 56(2), 417–433 (2018)

    Article  Google Scholar 

  31. Lumelskyj, D., Rojek, J., Lazarescu, L., Banabic, D.: Determination of forming limit curve by finite element method simulations. Proc. Manufacturingrocedia Manuf. 27, 78–82 (2019)

    Article  Google Scholar 

  32. Mandel, J.: Equilibre par trasches planes des solides à la limite d’écoulement. Ph.D. thesis, Thèse, Paris (1942)

  33. Marciniak, Z., Kuczyński, K.: Limit strains in the processes of stretch-forming sheet metal. Int. J. Mech. Sci. 9, 609–620 (1967)

    Article  MATH  Google Scholar 

  34. Martínez-Pañeda, E., Betegón, C.: Modeling damage and fracture within strain-gradient plasticity. Int. J. Solids Struct. 59, 208–215 (2015)

    Article  Google Scholar 

  35. Mohr, O.: Welche umstande bedingen der bruch und der elasizitätsgrenze des materials. Z. Verins Deutscher Ingenieure, 1524 (1900)

  36. Oliver, J.: Modeling strong discontinuities in solid mechanics via strain softening constitutive equations: part i: Fundamentals; part ii: Numerical simulation. Int. J. Numer. Methods Eng. 39, 3575–3600 (1996)

    Article  MATH  Google Scholar 

  37. Oliver, J.: On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations. Int. J. Solids Struct. 37, 7207–7229 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oliver, J., Cervera, M., Manzoli, O.: Strong discontinuities and continuum plasticity models: the strong discontinuity approach. Int. J. Plast 15, 319–351 (1999)

    Article  MATH  Google Scholar 

  39. Oliver, J., Huespe, A.E., Dias, I.F.: Strain localization, strong discontinuities and material fracture: matches and mismatches. Comput. Methods Appl. Mech. Eng. 241–244, 323–336 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ottosen, N., Runesson, K.: Discontinuous bifurcation in a nonassoicated mohr material. Mech. Mater. 12, 255–265 (1991)

    Article  Google Scholar 

  41. Poh, L., Swaddiwudhipong, S.: Over-nonlocal gradient enhanced plastic-damage model for concrete. Int. J. Solids Struct. 46, 4369–4378 (2009)

    Article  MATH  Google Scholar 

  42. Prandtl, L.: Über die häete plastistischer körper. Nachr. Ges. Wisensch, Göttingen, math. phys. Klasse, 74–85 (1920)

  43. Rice, J.: The localisation of plastic deformations. In: Koiter, W. (ed.) Theoretical and Applied Mechanics, pp. 207–220. North-Holland, Amsterdam (1976)

    Google Scholar 

  44. Rice, J.R.: A path independent integral and the approximate analysis of strain cncentrations by notches and cracks. J. Appl. Mech.-T ASME 35, 379–386 (1968)

    Article  Google Scholar 

  45. Rice, J.R.: Plane strain slip line theory for anisotropic rigid/plastic materials. J. Mech. Phys. Solids 21, 63–74 (1973)

    Article  MATH  Google Scholar 

  46. Rice, J.R., Rudnicki, J.W.: A note on some features of the theory of localization of deformation. Int. J. Solids Struct. 16, 597–605 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rojek, J., Kleiber, M., Piela, A., Stocki, R., Knabel, J.: Deterministic and stochastic analysis of failure in sheet metal forming operations. Steel Grips. Suppl. Matal Forming 2, 29–34 (2004)

    Google Scholar 

  48. Roscoe, K.: The influence of strains in soil mechanics. Géotechnique 20(2), 129–170 (1970)

    Article  Google Scholar 

  49. Rudnicki, J.W., Rice, J.R.: Conditions of the localization of deformation in pressure-sensitive dilatant material. J. Mech. Phys. Solids 23, 371–394 (1975)

    Article  Google Scholar 

  50. Runesson, K., Ottosen, N., Peric, D.: Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain. Int. J. Plast 7, 99–121 (1991)

    Article  MATH  Google Scholar 

  51. Simó, J., Hughes, T.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  52. Simó, J., Oliver, J., Armero, F.: An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. Mech. 12, 277–296 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Thomas, T.: Plastic Flow and Fracture of Solids. Academic Press, New York (1961)

    MATH  Google Scholar 

  54. Wu, J.Y.: Unified analysis of enriched finite elements for modeling cohesive cracks. Comput. Methods Appl. Mech. Eng. 200(45–46), 3031–3050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure in solids. J. Mech. Phys. Solids 103, 72–99 (2017)

    Article  MathSciNet  Google Scholar 

  56. Wu, J.Y.: A geometrically regularized gradient-damage model with energetic equivalence. Comput. Methods Appl. Mech. Eng. 328, 612–637 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wu, J. Y., Cervera, M.: Strain localization and failure mechanics for elastoplastic damage solids. Monograph CIMNE M147, Barrcelona, Spain (2014)

  58. Wu, J.Y., Cervera, M.: On the equivalence between traction- and stress-based approaches for the modeling of localized failure in solids. J. Mech. Phys. Solids 82, 137–163 (2015)

    Article  MathSciNet  Google Scholar 

  59. Wu, J.Y., Cervera, M.: A thermodynamically consistent plastic-damage framework for localized failure in quasi-brittle solids: material model and strain localization analysis. Int. J. Solids Struct. 88–89, 227–247 (2016)

    Article  Google Scholar 

  60. Wu, J.Y., Cervera, M.: Strain localization of elastic-damaging frictional-cohesive materials: analytical results and numerical verification. Materials 10, 434 (2017). https://doi.org/10.3390/ma10040434

    Article  Google Scholar 

  61. Wu, J.Y., Li, F.B.: An improved stable xfem (is-xfem) with a novel enrichment function for the computational modeling of cohesive cracks. Comput. Methods Appl. Mech. Eng. 295, 77–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wu, J.Y., Li, F.B., Xu, S.L.: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids. Comput. Methods Appl. Mech. Eng. 285, 346–378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids 119, 20–42 (2018)

    Article  MathSciNet  Google Scholar 

  64. Wu, J.Y., Nguyen, V.P., Nguyen, C.T., Sutula, D., Sinaie, S., Bordas, S.: Phase field modeling of fracture. Adv. Appl. Mech. Fract. Mech. Recent Dev. Trends 53, 1–183 (2020). https://doi.org/10.1016/bs.aams.2019.08.001

    Article  Google Scholar 

  65. Zhang, Y., Huang, J., Yuan, Y., Mang, H.A.: Cracking elements method with a dissipation-based arc-length approach. Finite Elem. Anal. Des. 195, 103573 (2021)

    Article  MathSciNet  Google Scholar 

  66. Zhang, Y., Zhuang, X.: Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elem. Anal. Des. 144, 84–100 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Financial support from the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Programme for Centres of Excellence in R&D (CEX2018- 000797-S) as well as the PriMuS project (Printing pattern based and MultiScale enhanced performance analysis of advanced Additive Manufacturing components, PID2020-115575RB-I00) is greatly acknowledged This work is also supported by National Natural Science Foundation of China (52125801; 51878294), National Key Laboratory of Shockwave and Denotation Physics (JCKYS2020212016) and Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003) to J.Y. Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ying Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervera, M., Wu, JY., Kim, S. et al. On the mechanics of strain localization in plasticity: isotropic and orthotropic, elasto- and rigid-plastic, associated and non-associated models. Acta Mech 233, 1513–1542 (2022). https://doi.org/10.1007/s00707-022-03184-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03184-9

Navigation