Skip to main content
Log in

The meshless local Petrov–Galerkin cumulant lattice Boltzmann method: strengths and weaknesses in aeroacoustic analysis

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method (LBM) suffers from an instability at low viscosities and from having to compromise between accuracy and computational efficiency due to its lattice uniformity. Thus, in this paper, the meshless local Petrov–Galerkin cumulant lattice Boltzmann method (MLPGC-LBM) is proposed to remedy these shortcomings. The collision step is modeled by the cumulant method, stable at low viscosities, and the streaming step is discretized first in time based on the Lax–Wendroff scheme, then in space according to the meshless local Petrov–Galerkin method, a mesh-free method (MLPG). To substantiate the accuracy of this method in aeroacoustics, the temporal decay of a standing plane wave, the spatial decay of a planar acoustic pulse, and the propagation of circular waves are considered, and the results are compared with numerical and analytical solutions. The comparisons show that MLPGC-LBM presents better results than standard LB methods, replicating the local radial point interpolation cumulant lattice Boltzmann method (LRPIC-LBM) results with relatively shorter runtimes, and being in a good agreement with the analytical solutions. The errors of the acoustic dispersion and dissipation are irrelevant, even for quite low resolutions. Therefore, MLPGC-LBM can offer an alternative to conventional aeroacoustics simulations alongside LRPIC-LBM with shorter runtimes, without parametric dependency on the number of points per wavelength and the resolution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kian Far, E., Geier, M., Kutscher, K., Krafczyk, M.: Implicit large eddy simulation of flow in a micro-orifice with the cumulant lattice boltzmann method. Computation (2017). https://doi.org/10.3390/computation5020023

    Article  MATH  Google Scholar 

  2. Javadi, K., Kazemi, K.: Microgravity modulation effects on free convection problems lbm simulation. Phys. Fluids 30(1), 017104 (2018)

    Article  Google Scholar 

  3. Fard, E.G.: A cumulant lbm approach for large eddy simulation of dispersion microsystems. PhD thesis, Univ.-Bibl (2015)

  4. Filippova, O., Hänel, D.: Grid refinement for lattice-bgk models. J. Comput. Phys. 147(1), 219–228 (1998). https://doi.org/10.1006/jcph.1998.6089

    Article  MATH  Google Scholar 

  5. Gorakifard, M., Cuesta, I., Salueña, C., Far, E.K.: Acoustic wave propagation and its application to fluid structure interaction using the cumulant lattice Boltzmann method. Comput. Math. Appl. 87, 91–106 (2021)

    Article  MathSciNet  Google Scholar 

  6. He, X., Luo, L.S., Dembo, M.: Some progress in lattice Boltzmann method. Part i. Nonuniform mesh grids. J. Comput. Phys. 129(2), 357–363 (1996). https://doi.org/10.1006/jcph.1996.0255

    Article  MathSciNet  MATH  Google Scholar 

  7. He, X., Doolen, G.: Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. J. Comput. Phys. 134(2), 306–315 (1997). https://doi.org/10.1006/jcph.1997.5709

    Article  MATH  Google Scholar 

  8. Mei, R., Shyy, W.: On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J. Comput. Phys. 143(2), 426–448 (1998)

    Article  MathSciNet  Google Scholar 

  9. Xi, H., Peng, G., Chou, S.H.: Finite-volume lattice Boltzmann method. Phys. Rev. E 59(5), 6202 (1999)

    Article  Google Scholar 

  10. Nannelli, F., Succi, S.: The lattice Boltzmann equation on irregular lattices. J. Stat. Phys. 68(3–4), 401–407 (1992)

    Article  MathSciNet  Google Scholar 

  11. Peng, G., Xi, H., Duncan, C., Chou, S.H.: Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys. Rev. E 59(4), 4675 (1999)

    Article  Google Scholar 

  12. Lee, T., Lin, C.L.: A characteristic Galerkin method for discrete Boltzmann equation. J. Comput. Phys. 171(1), 336–356 (2001). https://doi.org/10.1006/jcph.2001.6791

    Article  MATH  Google Scholar 

  13. Li, Y., LeBoeuf, E.J., Basu, P.K.: Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. Phys. Rev. E 72, 046711 (2005). https://doi.org/10.1103/PhysRevE.72.046711

    Article  Google Scholar 

  14. Min, M., Lee, T.: A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows. J. Comput. Phys. 230(1), 245–259 (2011). https://doi.org/10.1016/j.jcp.2010.09.024

    Article  MathSciNet  MATH  Google Scholar 

  15. Shu, C., Niu, X., Chew, Y.: Taylor-series expansion and least-squares-based lattice Boltzmann method: two-dimensional formulation and its applications. Phys. Rev. E 65(3), 036708 (2002)

    Article  Google Scholar 

  16. Shu, C., Chew, Y., Niu, X.: Least-squares-based lattice Boltzmann method: a meshless approach for simulation of flows with complex geometry. Phys. Rev. E 64(4), 045701 (2001)

    Article  Google Scholar 

  17. Fard, E.G., Shirani, E., Geller, S.: The fluid structure interaction with using of lattice Boltzmann method. In: 13th Annual International Conference Fluid Dynamic Conference, Shiraz, Iran (2010)

  18. Liu, G.R., Gu, Y.T.: An Introduction to Meshfree Methods and their Programming. Springer Science & Business Media, Dordrecht, The Netherlands (2005)

  19. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton, Florida, USA (2009)

  20. Slater, J.C.: Electronic energy bands in metals. Phys. Rev. 45(11), 794 (1934)

    Article  Google Scholar 

  21. Frazer, R.A., Jones, W.N.P., Skan, S.W.: Approximations to Functions and to the Solutions of Differential Equations. HSMO, London (1937)

    MATH  Google Scholar 

  22. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57(4), 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  23. Girault, V.: Theory of a finite difference method on irregular networks. SIAM J. Numer. Anal. 11(2), 260–282 (1974)

    Article  MathSciNet  Google Scholar 

  24. Perrone, N., Kao, R.: A general finite difference method for arbitrary meshes. Comput. Struct. 5(1), 45–57 (1975)

    Article  MathSciNet  Google Scholar 

  25. Snell, C., Vesey, D., Mullord, P.: The application of a general finite difference method to some boundary value problems. Comput. Struct. 13(4), 547–552 (1981)

    Article  Google Scholar 

  26. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  Google Scholar 

  27. Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)

    MATH  Google Scholar 

  28. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)

    Article  MathSciNet  Google Scholar 

  29. Liu, G., Gu, Y.: A local radial point interpolation method (lrpim) for free vibration analyses of 2-d solids. J. Sound Vib. 246(1), 29–46 (2001)

    Article  Google Scholar 

  30. Liu, G., Gu, Y.: A local point interpolation method for stress analysis of two-dimensional solids. Struct. Eng. Mech. 11(2), 221–236 (2001)

    Article  Google Scholar 

  31. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (mlpg) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)

    Article  MathSciNet  Google Scholar 

  32. Musavi, S.H., Ashrafizaadeh, M.: Meshless lattice Boltzmann method for the simulation of fluid flows. Phys. Rev. E 91(2), 023310 (2015)

    Article  MathSciNet  Google Scholar 

  33. Musavi, S.H., Ashrafizaadeh, M.: Development of a three dimensional meshless numerical method for the solution of the Boltzmann equation on complex geometries. Comput. Fluids 181, 236–247 (2019)

    Article  MathSciNet  Google Scholar 

  34. Tanwar, S.: A meshfree-based lattice boltzmann approach for simulation of fluid flows within complex geometries: application of meshfree methods for lbm simulations. In: Analysis and Applications of Lattice Boltzmann Simulations, 1st edn, pp. 188–222. IGI Global, USA (2018). https://doi.org/10.4018/978-1-5225-4760-0.ch006

  35. Kian Far, E., Geier, M., Krafczyk, M.: Simulation of rotating objects in fluids with the cumulant lattice Boltzmann model on sliding meshes. Comput. Math. Appl. (2018). https://doi.org/10.1016/j.camwa.2018.08.055

    Article  MATH  Google Scholar 

  36. Pribec, I., Becker, T., Fattahi, E.: A strong-form off-lattice Boltzmann method for irregular point clouds. Symmetry 13(10), 1802 (2021)

    Article  Google Scholar 

  37. Kian Far, E., Geier, M., Kutscher, K., Konstantin, M.: Simulation of micro aggregate breakage in turbulent flows by the cumulant lattice Boltzmann method. Comput. Fluids 140, 222–231 (2016). https://doi.org/10.1016/j.compfluid.2016.10.001

    Article  MathSciNet  MATH  Google Scholar 

  38. Kian Far, E., Langer, S.: Analysis of the cumulant lattice Boltzmann method for acoustics problems. In: The 13th International Conference on Theoretical and Computational Acoustics, Vienna, Austria (2017)

  39. Gorakifard, M., Salueña, C., Cuesta, I., Far, E.K.: Analysis of aeroacoustic properties of the local radial point interpolation cumulant lattice Boltzmann method. Energies (2021). https://doi.org/10.3390/en14051443

    Article  MATH  Google Scholar 

  40. Seeger, S., Hoffmann, H.: The cumulant method for computational kinetic theory. Contin. Mech. Thermodyn. 12(6), 403–421 (2000)

    Article  MathSciNet  Google Scholar 

  41. Seeger, S., Hoffmann, K.: The cumulant method for the space-homogeneous Boltzmann equation. Contin. Mech. Thermodyn. 17(1), 51–60 (2005)

    Article  MathSciNet  Google Scholar 

  42. Geier, M. et al.: Ab initio derivation of the cascaded lattice Boltzmann automaton. University of Freiburg–IMTEK (2006)

  43. Gorakifard, M., Salueña, C., Cuesta, I., Kian Far, E.: Acoustical analysis of fluid structure interaction using the cumulant lattice Boltzmann method. In: The 16th International Conference for Mesoscopic Methods in Engineering and Science, Heriot-Watt University, Edinburgh, Scotland (2019)

  44. Far, K., Geier, M., Krafczyk, M.: A sliding mesh lbm approach for the simulation of the rotating objects. In: Proceedings of the 13th International Conference for Mesoscopic Methods in Engineering and Science, Hamburg, Germany, vol. 22 (2016)

  45. Kian Far, E., Geier, M., Kutscher, K., Krafczyk, M.: Distributed cumulant lattice Boltzmann simulation of the dispersion process of ceramic agglomerates. J. Comput. Methods Sci. Eng. 16(2), 231–252 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Geier, M., Schönherr, M., Pasquali, A., Krafczyk, M.: The cumulant lattice Boltzmann equation in three dimensions: theory and validation. Comput. Math. Appl. 70(4), 507–547 (2015)

    Article  MathSciNet  Google Scholar 

  47. Kian Far, E., Gorakifard, M., Fattahi, E.: Multiphase phase-field lattice Boltzmann method for simulation of soluble surfactants. Symmetry (2021). https://doi.org/10.3390/sym13061019

    Article  Google Scholar 

  48. Far, K.: Turbulent flow simulation of dispersion microsystem with cumulant lattice Boltzmann method. In: Proceedings of the Formula X, Manchester, UK 24 (2019)

  49. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comp. 37(155), 141–158 (1981)

    Article  MathSciNet  Google Scholar 

  50. Kinsler, L.E., Frey, A.R., Coppens, A., Sanders, J.: Fundamentals of acoustics. Amer. J. Phys. 19(4), 254–255 (1951)

    Article  Google Scholar 

  51. Bres, G., Pérot, F., Freed, D.: Properties of the lattice Boltzmann method for acoustics. In: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), pp. 3395 (2009)

  52. Gendre, F., Ricot, D., Fritz, G., Sagaut, P.: Grid refinement for aeroacoustics in the lattice Boltzmann method: a directional splitting approach. Phys. Rev. E 96(2), 023311 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Ministry of Economy, Industry and Competitiveness Research National Agency (under project DPI2016-75791-C2-1-P), by FEDER funds and by Generalitat de Catalunya—AGAUR (under project 2017 SGR 01234), ministerio de economía, industria y competitividad, gobierno de españa (BES-2018-080566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Gorakifard.

Ethics declarations

Data availability

Authors can confirm that all relevant data are included in the article.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorakifard, M., Salueña, C., Cuesta, I. et al. The meshless local Petrov–Galerkin cumulant lattice Boltzmann method: strengths and weaknesses in aeroacoustic analysis. Acta Mech 233, 1467–1483 (2022). https://doi.org/10.1007/s00707-022-03177-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03177-8

Navigation