Skip to main content
Log in

Effect of nanoscale amorphization in nanocrystalline bimaterials on dislocation emission from the tip of colinear linear cracks

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a theoretical model is established to describe the effect of nanoscale amorphization in nanocrystalline bimaterials on the dislocation emission from the tip of a collinear crack at the interface. In the description, nanoscale amorphization is formed by the splitting transition of the Grain Boundary (GB, the disclination of GBs caused by the movement of GBs). The analytical solution of the model is obtained by the elasticity complex potential solution method. In addition, the effects of nanoscale amorphization, dislocation emission angle, interfacial crack length and material constants of nanocrystalline bimaterials on the critical stress intensity factor of interfacial crack tip corresponding to dislocation emission are discussed through numerical analysis. The analysis shows that the influence of nanoscale amorphization in nanocrystalline bimaterials on the critical stress intensity factor (SIF) corresponding to dislocation emission depends on the dislocation emission angle, the position and size of the nanoscale amorphization, interface crack length and relative shear modulus. With the increase in relative shear modulus and dislocation emission angle, the normalized critical SIF decreases at first and increases afterwards. When the nanoscale amorphization size is small, the critical SIF of the dislocation is less affected, but when the size is larger, the impact becomes great. The influence of nanoscale amorphization on the dislocation emission from collinear interface crack tip is related to nanoscale amorphization and relative shear modulus. There is a critical relative shear modulus that the increase in dislocation intensity has little effect on dislocation emission. Appropriate selection of materials for the upper and lower planes can reduce the critical stress intensity factor corresponding to dislocation emission, thereby promoting the dislocation emission from interface cracks and improving the toughness of the nanocrystalline bimaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kuntz, J.D., Zhan, G.D., Mukherjee, A.K.: Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bull. 29, 22–27 (2004)

    Article  Google Scholar 

  2. Yang, F., Yang, W.: Crack growth versus blunting in nanocrystalline metals with extremely small grain size. J. Mech. Phys. Solids 57, 305–324 (2009)

    Article  MATH  Google Scholar 

  3. Barai, P., Weng, G.J.: Mechanics of creep resistance in nanocrystalline solids. Acta Mech. 195, 327–348 (2008)

    Article  MATH  Google Scholar 

  4. Mukhopadhyay, A., Basu, B.: Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int. Mater. Rev. 52, 257–288 (2007)

    Article  Google Scholar 

  5. Ovid’Ko, I.A.: Deformation and Diffusion Modes in Nanocrystalline Materials. Int. Mater. Rev. 50, 65–82 (2005)

    Article  Google Scholar 

  6. Figueiredo, R.B., Kawasaki, M., Langdon, T.: The mechanical properties of ultrafine-grained metals at elevated temperatures. Rev. Adv. Mater. Sci 19, 1–12 (2009)

    Google Scholar 

  7. He, T., Feng, M., Chen, X.: Martensitic Transformation Effect on the Dislocation Emission from a Semi-infinite Crack Tip in Nanocomposites. Acta Mech. Solida Sin. 32(2), 160–172 (2019)

    Article  Google Scholar 

  8. Sun, X., Han, W., Liu, Q., Hu, P., Hong, C.: ZrB2-ceramic toughened by refractory metal Nb prepared by hot-pressing. Mater Des. 31(9), 4427–4431 (2010)

    Article  Google Scholar 

  9. Zhu, Y.F., Shi, L., Liang, J., Hui, D., Lau, K.T.: Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos Part B Eng. 39(7–8), 1136–1141 (2008)

    Article  Google Scholar 

  10. Li, M., Schaffer, H., Soboyejo, W.O.: Transformation toughening of NiAl composites reinforced with yttria partially stabilized zirconia particles. J Mater Sci. 35(6), 1339–1345 (2000)

    Article  Google Scholar 

  11. Zhao, H.B., Feng, H., Liu, F., et al. Effect of nanoscale twin and dislocation pileup at twin boundary on crack blunting in nanocrystalline materials. Acta Mech. (2017).

  12. Yu, M., Yang, Y., Peng, X., et al.: Effect of nanotwin and dislocation pileup at twin boundary on dislocation emission from a semi-elliptical blunt crack tip in nanocrystalline materials. Eng. Fract. Mech. 202, 288–296 (2018)

    Article  Google Scholar 

  13. Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59, 5023–5031 (2011)

    Article  Google Scholar 

  14. Li, J., Jin, Z.Q., Liu, J.P., Wang, Z.L., Thadhani, N.N.: Amorphization and ultrafine-scale recrystallization in shear bands formed in shock-consolidated Pr2Fe14B∕α-Fe nanocomposite magnets. Appl. Phys. Lett. 85, 2223–2225 (2004)

    Article  Google Scholar 

  15. Wang, Y.M., Bringa, E.M., McNaney, J.M., Victoria, M., Caro, A., Hodge, A.M., Smith, R., Torralva, B., Remington, B.A., Schuh, C.A., Jamarkani, H., Meyers, M.A.: Deforming nanocrystalline nickel at ultrahigh strain rates. Appl. Phys. Lett. 88, 061917 (2006)

    Article  Google Scholar 

  16. Clayton, J.D., Knap, J.: Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations. Continuum Mech. Thermodyn. 30, 421–455 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bobylev, S., Ovid’ko, I.: Nanoscale amorphization at disclination quadrupoles in deformed nanomaterials and polycrystals. Appl. Phys. Lett. 93, 061904 (2008)

    Article  Google Scholar 

  18. Ovid’ko, I.: Nanoscale amorphization as a special deformation mode in nanowires. Scr. Mater. 66, 402–405 (2012)

    Article  Google Scholar 

  19. Nagumo, M., Ishikawa, T., Endoh, T., Inoue, Y.: Amorphization associated with crack propagation in hydrogen-charged steel. Scripta Mater. 2012(49), 837–842 (2003)

    Article  Google Scholar 

  20. Zhu, Y.T., Liao, X.Z., Wu, X.L.: Deformation twinning in bulk nanocrystalline metals: experimental observations. JOM. 60, 60 (2008)

    Article  Google Scholar 

  21. Wu, X.L., Zhu, Y.T.: Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries. Appl. Phys. Lett. 89, 58 (2006)

    Google Scholar 

  22. Wang, Y.M., Hodge, A.M., Biener, J., Hamza, A.V.: Deformation twinning during nanoindentation of nanocrystalline Ta. Appl. Phys. Lett. 86, 44 (2005)

    Google Scholar 

  23. Fang, Q., Zhang, L., Liu, Y.: Influence of grain boundary sliding and grain size on dislocation emission from a crack tip. Int. J. Damage Mech. 23, 192–202 (2013)

    Article  Google Scholar 

  24. Fang, Q.H., Feng, H., Liu, Y.W., Lin, S., Zhang, N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 49, 1406–1412 (2012)

    Article  Google Scholar 

  25. Chen, B.T., Lee, S.: Dislocation emission criterion for a wedge crack under mixed mode loading. Int. J. Fract. 102, 287–302 (2000)

    Article  Google Scholar 

  26. Zhou, K., Wu, M.S., Nazarov, A.A.: Relaxation of a disclinated tricrystalline nanowire. Acta Mater. 56, 5828–5836 (2008)

    Article  Google Scholar 

  27. Fang, Q.H., Liu, Y., Liu, Y.W., Huang, B.Y.: Dislocation emission from an elliptically blunted crack tip with surface effects. Physica B 404, 3421–3424 (2009)

    Article  Google Scholar 

  28. Feng, H., Fang, Q.H., Liu, Y.W., Chen, C.P.: Nanoscale rotational deformation effect on dislocation emission from an elliptically blunted crack tip in nanocrystalline materials. Int. J. Solids Struct. 51, 352–358 (2014)

    Article  Google Scholar 

  29. Feng, H., Fang, Q.H., Zhang, L.C., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61, 39–48 (2013)

    Article  Google Scholar 

  30. Ovid’ko, I.A., Sheinerman, A.G.: Ductile vs brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58(16), 5286–5294 (2010)

    Article  Google Scholar 

  31. Lyu, D., Li, S.: Recent developments in dislocation pattern dynamics: current opinions and perspectives. J. Micromech. Mole. Phys. (2018).

  32. Fang, Q.H., Zhang, L.C.: Coupled effect of grain boundary sliding and dislocation emission on fracture toughness of nanocrystalline materials. J. Micromech. Mole. Phys. 01(02), 1650008 (2016)

    Article  Google Scholar 

  33. Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211(3–4), 271–292 (2010)

    Article  MATH  Google Scholar 

  34. Lee, S.L., Huang, W.S., Shiue, S.T.: Elastic interaction between screw dislocations and a blunting interfacial crack. Mater. Sci. Eng., A 142(1), 41–50 (1991)

    Article  Google Scholar 

  35. Fang, Q., Liu, Y., Jiang, C.: Interaction between a screw dislocation and an elastic elliptical inhomogeneity with interfacial cracks. Acta. Mech. Sin. 21(002), 151–159 (2005)

    Article  MATH  Google Scholar 

  36. Junjie, Q., Rongjia, L.: Analysis of interface crack stress and electric field concentration factor of thin film substrate structure. Chin. J. Appl. Mech. 37(163), 362–368 (2020)

    Google Scholar 

  37. Zhang, S., Yao, H., Li, J.: Stress fields near mode II interface crack tip of two dissimilar orthotropic composite materials. Key Eng. Mater. 385–387, 585–588 (2008)

    Google Scholar 

  38. Huijuan, Z., Anqiang, D., Junlin, Li., et al.: Stress analysis of anti-plane interface cracks in orthotropic piezoelectric bimaterials. J. Taiyuan Univ. Sci. Technol. 041(001), 72–77 (2020)

    Google Scholar 

  39. Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. John-wiley, New York (1964)

    MATH  Google Scholar 

  40. Mushkelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity (1975).

  41. Fang, Q.H., Liu, Y.W., Jiang, C.P., et al.: Interaction of a wedge disclination dipole with interfacial cracks. Eng. Fract. Mech. 73(9), 1235–1248 (2006)

    Article  Google Scholar 

  42. Zhang, T.Y., Li, J.: Interaction of an edge dislocation with an interfacial crack. J. Appl. Phys. 72(6), 2215 (1992)

    Article  Google Scholar 

  43. Langer, J.S.: Fracture toughness of crystalline solids. Phys. Rev. E 103(6), 063004 (2021)

    Article  MathSciNet  Google Scholar 

  44. Langer, J.S., Le, K.C.: Scaling confirmation of the thermodynamic dislocation theory. Proc. Natl. Acad. Sci. 117(47), 29431–29434 (2020)

    Article  MathSciNet  Google Scholar 

  45. Le, K.C., Tran, T.M., Langer, J.S.: Thermodynamic dislocation theory of adiabatic shear banding in steel. Scripta Mater. 149, 62–65 (2018)

    Article  Google Scholar 

  46. Issa, I., Hohenwarter, A., Fritz, R., et al.: Fracture properties of ultrafine grain chromium correlated to single dislocation processes at room temperature. J. Mater. Res. 34(13), 2370–2383 (2019)

    Article  Google Scholar 

  47. Youssef, K.M., Scattergood, R.O., Murty, K.L., Koch, C.C.: Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scripta Mater. 54, 251–256 (2006)

    Article  Google Scholar 

  48. Rice, J.R., Thomson, R.: Ductile versus brittle behavior of crystals. Philos. Mag. 29, 73–80 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the support from the Natural Science Foundation of Hunan Province (2021JJ31136), the key scientific research projects of Hunan Provincial Education Department (20A522), the National Natural Science Foundation of China (11602308) and the science and technology innovation Program of Hunan Province (2020RC4049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Yu or Xianghua Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Yu, M., Peng, X. et al. Effect of nanoscale amorphization in nanocrystalline bimaterials on dislocation emission from the tip of colinear linear cracks. Acta Mech 233, 2061–2075 (2022). https://doi.org/10.1007/s00707-022-03170-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03170-1

Navigation