Skip to main content
Log in

Delay or control of flow separation for enhanced aerodynamic performance using an effective morphed surface

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates an improvement of the aerodynamic performance of a wing at high, including post-stall angles of attack by re-designing its camber line to control the separation of its boundary layer. This is experimentally implemented using an Aluminum secondary skin on the wing surface, which aligns itself to the separated boundary layer at high angles to attack, such that the flow remains attached to it, which otherwise would have separated on the baseline configuration. The shape of the skin, which is now regarded as the active flow surface, is essentially a morphed version of the baseline shape of the wing and is predicted numerically using an in-house code based on a ‘decambering’ technique that accounts for the local deviation of camber by accounting for the difference in the coefficients of lift and pitching moment predicted by viscous and potential flows. This technique is tested on a rectangular planform using different wing sections, NACA0012, NACA4415, and NRELS809. The effective morphed flow surface is also used for the baseline wing to operate at a design local 2D \(C_l\), which is obtained by incrementing the baseline \(C_l\) by a user defined percentage at design pre and post-stall angles of attack. Aerodynamic characteristics of the effective morphed configurations using numerical analysis, CFD, and wind tunnel experiments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(C_L, C_M, {C_D}_i,C_P\) :

Coefficients of lift, pitching moment, induced drag, pressure of wing

\(\alpha \), \(\alpha _{C_{L=0}}\) :

Angle of attack and zero-lift angle of attack

\(\Delta {C_l}, \Delta {C_m}\) :

Difference between viscous and potential values

\(\delta _1\), \(\delta _2\) :

Decambering functions

\((x_1, x_2)\) :

Cartesian locations of \(\delta _1\) and \(\delta _2\)

\( {\alpha ,AoA}\) :

Angle of attack

x/C :

Axial distance over airfoil section axial chord

AR :

Aspect ratio

Root :

Span-wise mid/symmetry plane section of the wing

\(3D,2D\,\,C_l\) :

Three-dimensional and two-dimensional lift coefficient

CFD :

Computational Fluid Dynamics

NACA :

National Advisory Committee for Aeronautics

NREL :

National Renewable Energy Laboratory

References

  1. Lissaman, P.B.S.: Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech. 15(1), 223–239 (1983)

    Article  Google Scholar 

  2. Demir, H., Genç, M.S.: An experimental investigation of laminar separation bubble formation on flexible membrane wing. Eur. J. Mech.-B/Fluids 65, 326–338 (2017)

    Article  Google Scholar 

  3. Genç, M., Kaynak, Ü.: Control of flow separation and transition point over an aerofoil at low Re number using simultaneous blowing and suction, In: 19th AIAA Computational Fluid Dynamics, 3672 (2009)

  4. Acikel, H., Genc, M. S., Akpolat, M., Karasu, I.: An experimental study of acoustic disturbances effect on laminar separation bubble and transition over an aerofoil at low Reynolds number. In: 6th AIAA Flow Control Conference, 2684 (2012)

  5. Açıkel, H.H., Genç, M.S.: Flow control with perpendicular acoustic forcing on NACA 2415 aerofoil at low Reynolds numbers. Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 230(13), 2447–2462 (2016)

    Article  Google Scholar 

  6. Serdar Genç, M., İlyas Karasu, H., Açıkel, H., Tuğrul Akpolat, M., Özkan, G.: Acoustic control of flow over NACA 2415 aerofoil at low Reynolds numbers, Sustainable Aviation, 375–420 (2016)

  7. Genç, M.S., Açıkel, H.H., Koca, K.: Effect of partial flexibility over both upper and lower surfaces to flow over wind turbine airfoil. Energy Convers. Manage. 219, 113042 (2020)

    Article  Google Scholar 

  8. Açıkel, H.H., Genc, M.S.: Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface. Energy 165, 176–190 (2018)

    Article  Google Scholar 

  9. Koca, K., Genç, M.S., Bayir, E., Soğksu, F.K.: Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output. Energy 239, 121887 (2022)

  10. Seifert, A., Darabi, A., Wyganski, I.: Delay of airfoil stall by periodic excitation. J. Aircr. 33(4), 691–698 (1996)

    Article  Google Scholar 

  11. Rinoie, K., Okuno, M., Sunada, Y.: Airfoil stall suppression by use of a bubble burst control plate. AIAA J. 47(2), 322–330 (2009)

    Article  Google Scholar 

  12. Brücker, C., Weidner, C.: Influence of self-adaptive hairy flaps on the stall delay of an airfoil in ramp-up motion. J. Fluids Struct. 47, 31–40 (2014)

    Article  Google Scholar 

  13. Sosa, R., Artana, G., Moreau, E., Touchard, G.: Stall control at high angle of attack with plasma sheet actuators. Exp. Fluids 42(1), 143–167 (2007)

    Article  Google Scholar 

  14. Choudhry, A., Arjomandi, M., Kelso, R.: Methods to control dynamic stall for wind turbine applications. Renewable Energy 86, 26–37 (2016)

    Article  Google Scholar 

  15. Arruda, A., Abdalla, A., De Marqui, C.: Numerical and experimental investigation and optimization of a morphing airfoil. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 9356 (2010)

  16. Di Matteo, N., Guo, S.: Morphing trailing edge flap for high lift wing, 52nd AIAA/ASME/ASCE/AHS/ASC structures. In: Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t, (2011), p. 2164

  17. Molinari, G., Arrieta, A.F., Ermanni, P.: Aero-structural optimization of 3-d adaptive wings with embedded smart actuators, In: 54th AIAA/ASME/ASCE/AHS/ASC Structures. Structural Dynamics, and Materials Conference, 1528 (2013)

  18. Communier, D., Botez, R.M., Wong, T.: Experimental validation of a new morphing trailing edge system using Price–Païdoussis wind tunnel tests. Chinese J. Aeronautics 32(6), 1353–1366 (2019)

  19. Tarabi, A., Ghasemloo, S., Mani, M.: Experimental investigation of a variable-span morphing wing model for an unmanned aerial vehicle. J. Braz. Soc. Mech. Sci. Eng. 38(7), 1833–1841 (2016)

    Article  Google Scholar 

  20. Siddall, R., Ancel, A.O., Kovač, M.: Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus 7(1), 20160085 (2017)

    Article  Google Scholar 

  21. Beaverstock, C., Woods, B., Fincham, J., Friswell, M.: Performance comparison between optimised camber and span for a morphing wing. Aerospace 2(3), 524–554 (2015)

    Article  Google Scholar 

  22. Panta, A., Fisher, A., Mohamed, A., Matthew Marino, R.X., Liu, H., Watkins, S.: Low Reynolds number aerodynamics of leading-edge and trailing-edge hinged control surfaces: part i statics. Aerosp. Sci. Technol. 99, 105563 (2020)

    Article  Google Scholar 

  23. Bashir, M., Longtin-Martel, S., Botez, R.M., Wong, T.: Aerodynamic design optimization of a morphing leading edge and trailing edge airfoil-application on the uas-s45. Appl. Sci. 11(4), 1664 (2021)

    Article  Google Scholar 

  24. Genç, M.S.: Unsteady aerodynamics and flow-induced vibrations of a low aspect ratio rectangular membrane wing with excess length. Exp. Thermal Fluid Sci. 44, 749–759 (2013)

    Article  Google Scholar 

  25. Rojratsirikul, P., Wang, Z., Gursul, I.: Unsteady Fluid-Structure Interactions of Membrane Airfoils at Low Reynolds Numbers, pp. 297–310. Springer, Animal Locomotion (2010)

  26. Genç, M.S., Özden, M., Açikel, H.H., Demir, H., Isabekov, I.: Unsteady flow over flexible wings at different low Reynolds numbers, In: EPJ Web of Conferences, vol. 114, EDP Sciences, (2016), p. 02030

  27. Hefeng, D., Chenxi, W., Shaobin, L., Zhen, S.X.: Numerical research on segmented flexible airfoils considering fluid-structure interaction. Proc. Eng. 99, 57–66 (2015)

    Article  Google Scholar 

  28. Sato, J., Sunada, Y.: Experimental research on blunt trailing-edge airfoil sections at low Reynolds numbers. AIAA J. 33(11), 2001–2005 (1995)

    Article  Google Scholar 

  29. Ramjee, V., Tulapurkara, E.G., Balabaskaran, V.: Experimental and theoretical study of wings with blunt trailing edges. J. Aircr. 23(4), 349–352 (1986)

    Article  Google Scholar 

  30. Baker, J., Mayda, E., Dam, C.: Experimental analysis of thick blunt trailing-edge wind turbine airfoils. J. Sol.Energy Eng. 128, 422–431 (2006)

    Article  Google Scholar 

  31. Hongpeng, L., Yu, W., Rujing, Y., Peng, X., Qing, W.: Influence of the modification of asymmetric trailing-edge thickness on the aerodynamic performance of a wind turbine airfoil. Renewable Energy 147, 1623–1631 (2020)

    Article  Google Scholar 

  32. Standish, K.J., Van Dam, C.P.: Aerodynamic analysis of blunt trailing edge airfoils. J. Sol. Energy Eng. 125(4), 479–487 (2003)

    Article  Google Scholar 

  33. Chen, H., Qin, N.: Trailing-edge flow control for wind turbine performance and load control. Renewable Energy 105, 419–435 (2017)

    Article  Google Scholar 

  34. Mukherjee, R., Gopalarathnam, A.: Poststall prediction of multiple-lifting-surface configurations using a decambering approach. J. Aircr. 43(3), 660–668 (2006)

    Article  Google Scholar 

  35. Kline, S.J., McClintock, F.A.: Describing uncertainties in single-sample experiments. Mech. Eng. Exper. Thermal Fluid Sci. 75, 3–8 (1953)

    Google Scholar 

  36. Moffat, R.J.: Using uncertainty analysis in the planning of an experiment. J. Fluids Eng. 107(2), 173–178 (1985)

    Article  Google Scholar 

  37. Aritras Roy, R., Kumar, V., Mukherjee, R.: Experimental validation of numerical decambering approach for flow past a rectangular wing. Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 234(9), 1564–1582 (2020)

    Article  Google Scholar 

  38. Ananda, G.K., Sukumar, P.P., Selig, M.S.: Measured aerodynamic characteristics of wings at low Reynolds numbers. Aerosp. Sci. Technol. 42, 392–406 (2015)

    Article  Google Scholar 

  39. Jacobs, E.N., Sherman, A.: Airfoil section characteristics as affected by variations of the Reynolds number, NASA Technnical Reports Server (1937)

  40. M., Mueller Drela, T. J. (ed.): An analysis and design system for low Reynolds number airfoils, low Reynolds number aerodynamics. In: Lecture Notes in Engineering, vol. 54. Springer-Verlag, New York (1989)

  41. Bertagnolio, F., Sørensen, N., Johansen, J., Fuglsang, P.: Wind turbine airfoil catalogue, (2001)

  42. Roy, A., Mukherjee, R.: Three dimensional rectangular wing morphed to prevent stall and operate at design local two dimensional lift coefficient. Aerosp. Sci. Technol. 107, 106312 (2020)

    Article  Google Scholar 

  43. Zhang, X., Wang, G., Zhang, M., Liu, H., Li, W.: Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height. Int. J. Hydrogen Energy 42(29), 18252–18262 (2017)

    Article  Google Scholar 

  44. Carr, L.W., McCroskey, W.J., McAlister, K.W.: Dynamic stall experiments on oscillating airfoils. AIAA J. 14, 57–63 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Center of Propulsion Technologies, Defence Research and Development Organisation, India (DRDO/DFTM/04/3304/PC/02/776/D(R&D)) for funding the research of PhD Scholar, Mr. Aritras Roy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritras Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Mukherjee, R. Delay or control of flow separation for enhanced aerodynamic performance using an effective morphed surface. Acta Mech 233, 1543–1566 (2022). https://doi.org/10.1007/s00707-022-03165-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03165-y

Navigation