Skip to main content
Log in

A copula-function-based structural system reliability analysis method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, a copula-function-based system reliability analysis method is proposed for reliability evaluation of structures with multiple failure modes. The vine copula function is used to process the correlations that exist between performance functions. The joint probability density function of the performance function random vector is then converted into multiple bivariate copula functions. The maximum likelihood estimation method and Akaike information criteria are used for optimal selection of each bivariate copula function. Based on this process, a joint probability density function of the performance function random vector is constructed. Then, based on the joint probability density function, a Monte Carlo simulation method is given to calculate the system reliability of the structure. Finally, the effectiveness of the method proposed in this study is verified using 4 numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hasofer, A.M., Lind, N.C.: Exact and invariant second-moment code format. J .Eng. Mech. Div. 100(1), 111–121 (1974)

    Article  Google Scholar 

  2. Rackwitz, R., Flessler, B.: Structural reliability under combined random load sequences. Comput. Struct. 9(5), 489–494 (1978)

    Article  MATH  Google Scholar 

  3. Breitung, K.: Asymptotic approximations for multinormal integrals. J. Eng. Mech. 110(3), 357–366 (1984)

    MATH  Google Scholar 

  4. Rashki, M., Azarkish, H., Rostamian, M., Bahrpeyma, A.: Classification correction of polynomial response surface methods for accurate reliability estimation. Struct. Saf. 81, 101869 (2019)

    Article  Google Scholar 

  5. Rathi, A.K., Sharma, P.V.S., Chakraborty, A.: Sequential stochastic response surface method using moving least squares-based sparse grid scheme for efficient reliability analysis. Int. J. Comput. Methods 16(5), 1840017 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Augusti, G., Baratta, A., Gasciati, F.: Probabilistic Methods in Structural Engineering. Chapman and Hall, London (1984)

    Book  MATH  Google Scholar 

  7. Kamiński, M., Świta, P.: Structural stability and reliability of the underground steel tanks with the stochastic finite element method. Arch. Civ. Mech. Eng. 15(2), 593–602 (2015)

    Article  Google Scholar 

  8. Duan, S.Y., Han, X., Liu, G.R.: Structural optimization and reliability analysis of automotive composite bumper against low-velocity longitudinal and corner pendulum impacts. Int. J. Comput. Methods 16(8), 1841003 (2019)

    Article  MATH  Google Scholar 

  9. Shi, B., Deng, Z.: An efficient reliability method for composite laminates with high-dimensional uncertainty variables. Acta Mech. 232(9), 3509–3527 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, J., Xiao, M., Gao, L., Chu, S.: A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities. Comput. Methods Appl. Mech. Eng. 344, 13–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. You, L.F., Zhang, J.G., Zhou, S., Wu, J.: A novel mixed uncertainty support vector machine method for structural reliability analysis. Acta Mech. 232(4), 1497–1513 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cornell, C.A.: Bounds on the reliability of structural systems. J. Struct. Div. 93(1), 171–200 (1967)

    Article  Google Scholar 

  13. Ditlevsen, O.: Narrow reliability bounds for structural systems. J. Struct. Mech. 7(4), 453–472 (1979)

    Article  Google Scholar 

  14. Du, X.: System reliability analysis with saddlepoint approximation. Struct. Multidiscip. Optim. 42(2), 193–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, Y.G., Zhong, W.Q., Ang, A.H.S.: Estimating joint failure probability of series structural systems. J. Eng. Mech. 133(5), 588–596 (2007)

    Google Scholar 

  16. Mahadevan, S., Raghothamachar, P.: Adaptive simulation for system reliability analysis of large structures. Comput. Struct. 77(6), 725–734 (2000)

    Article  Google Scholar 

  17. Zhao, Y.G., Ang, A.H.S.: System reliability assessment by method of moments. J. Struct. Eng. 129(10), 1341–1349 (2003)

    Article  Google Scholar 

  18. Naess, A., Leira, B.J., Batsevych, O.: System reliability analysis by enhanced Monte Carlo simulation. Struct. Saf. 31(5), 349–355 (2009)

    Article  Google Scholar 

  19. Bichon, B.J., McFarland, J.M., Mahadevan, S.: Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliab. Eng. Syst. Saf. 96(10), 1386–1395 (2011)

    Article  Google Scholar 

  20. Cheng, J., Zhao, W.: Parallel system reliability analysis with a CECBO algorithm. Struct. Multidiscip. Optim. 64(1), 71–88 (2021)

    Article  MathSciNet  Google Scholar 

  21. Pearson K., Henrici O.M.F.E.: VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 187, 253–318 (1896)

  22. Tang, X.S., Li, D.Q., Zhou, C.B., Phoon, K.K., Zhang, L.M.: Impact of copulas for modeling bivariate distributions on system reliability. Struct. Saf. 44, 80–90 (2013)

    Article  Google Scholar 

  23. Tang, X.S., Li, D.Q., Zhou, C.B., Zhang, L.M.: Bivariate distribution models using copulas for reliability analysis. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 227(5), 499–512 (2013)

    Google Scholar 

  24. Noh, Y., Choi, K.K., Du, L.: Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula. Struct. Multidiscip. Optim. 38(1), 1–16 (2009)

    Article  Google Scholar 

  25. Jiang, C., Zhang, W., Wang, B., Han, X.: Structural reliability analysis using a copula-function-based evidence theory model. Comput. Struct. 143, 19–31 (2014)

    Article  Google Scholar 

  26. Jiang, C., Zhang, W., Han, X., Ni, B.Y., Song, L.J.: A vine-copula-based reliability analysis method for structures with multidimensional correlation. ASME J. Mech. Des. 137(6), 061405 (2015)

    Article  Google Scholar 

  27. Park, C., Kim, N.H., Haftka, R.T.: The effect of ignoring dependence between failure modes on evaluating system reliability. Struct. Multidiscip. Optim. 52(2), 251–268 (2015)

    Article  Google Scholar 

  28. Wu, X.Z.: Assessing the correlated performance functions of an engineering system via probabilistic analysis. Struct. Saf. 52, 10–19 (2015)

    Article  Google Scholar 

  29. Navarro, J., Spizzichino, F.: Comparisons of series and parallel systems with components sharing the same copula. Appl. Stoch. Model. Bus. Ind. 26(6), 775–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y., Pham, H.: Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas. IEEE Trans. Reliab. 61(1), 13–22 (2012)

    Article  Google Scholar 

  31. Eryilmaz, S.: Estimation in coherent reliability systems through copulas. Reliab. Eng. Syst. Saf. 96(5), 564–568 (2011)

    Article  Google Scholar 

  32. Eryilmaz, S.: Multivariate copula based dynamic reliability modeling with application to weighted-k-out-of-n systems of dependent components. Struct. Saf. 51, 23–28 (2014)

    Article  Google Scholar 

  33. Wang, F., Li, H.: A practical non-parametric copula algorithm for system reliability with correlations. Appl. Math. Model. 74, 641–657 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, Y., Liu, Q., Kuang, J., Xie, K., Du, W.: Modeling multivariate dependence by nonparametric pair-copula construction in composite system reliability evaluation. Int. J. Electr. Power Energy Syst. 124, 106373 (2021)

    Article  Google Scholar 

  35. Huard, D., Évin, G., Favre, A.C.: Bayesian copula selection. Comput. Stat. Data Anal. 51(2), 809–822 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8, 229–231 (1959)

    MATH  Google Scholar 

  37. Nelsen, R.B.: An Introduction to Copulas. Springer, New York (1999)

    Book  MATH  Google Scholar 

  38. Joe, H.: Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. Lect. Notes-Monogr. Ser. 28, 120–141 (1996)

    MathSciNet  Google Scholar 

  39. Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent random variables modeled by Vines. Ann. Math. Artif. Intell. 32(1), 245–268 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bedford, T., Cooke, R.M.: Vines–a new graphical model for dependent random variables. Ann. Stat. 30(4), 1031–1068 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44(2), 182–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dißmann, J., Brechmann, E.C., Czado, C., Kurowicka, D.: Selecting and estimating regular vine copulae and application to financial returns. Comput. Stat. Data Anal. 59, 52–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hohenbichler, M., Rackwitz, R.: Non-normal dependent vectors in structural safety. J. Eng. Mech. Div. 107(6), 1227–1238 (1981)

    Article  Google Scholar 

  44. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte-Carlo Method, 2nd edn. Wiley, New York (2007)

    Book  MATH  Google Scholar 

  45. Zhang, M.: Structural Reliability Analysis: Methods and Procedure. Science Press, Beijing (2009)

    Google Scholar 

  46. Shih, J.H., Louis, T.A.: Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51(4), 1384–1399 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, D.Q., Tang, X.S., Phoon, K.K., Chen, Y.F., Zhou, C.B.: Bivariate simulation using copula and its application to probabilistic pile settlement analysis. Int. J. Numer. Anal. Meth. Geomech. 37(6), 597–617 (2013)

    Article  Google Scholar 

  49. Lü, T.J., Tang, X.S., Li, D.Q., Qi, X.H.: Modeling multivariate distribution of multiple soil parameters using vine copula model. Comput. Geotech. 118, 103340 (2020)

    Article  Google Scholar 

  50. Lebrun, R., Dutfoy, A.: Do Rosenblatt and Nataf isoprobabilistic transformations really differ? Probab. Eng. Mech. 24(4), 577–584 (2009)

    Article  Google Scholar 

  51. Low, B.K., Zhang, J., Tang, W.H.: Efficient system reliability analysis illustrated for a retaining wall and a soil slope. Comput. Geotech. 38(2), 196–204 (2011)

    Article  Google Scholar 

  52. Scott, W.R., Bain, C., Manoogian, S.J., Cormier, J.M., Funk, J.R.: Simulation model for low-speed bumper-to-bumper crashes. SAE Int. J. Passeng. Cars-Mech. Syst. 3(1), 21–36 (2010)

    Article  Google Scholar 

  53. Jiang, C., Deng, S.L.: Multi-objective optimization and design considering automotive high-speed and low-speed crashworthiness. Chin. J. Comput. Mech. 31(4), 474–479 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 52105253), the National Science Fund for Distinguished Young Scholars (Grant No. 51725502), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, D., Zhang, W., Li, J.W. et al. A copula-function-based structural system reliability analysis method. Acta Mech 233, 1371–1391 (2022). https://doi.org/10.1007/s00707-022-03160-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03160-3

Navigation