Skip to main content
Log in

Numerical investigation of oil–water separation on a mesh-type filter

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The oil–water separation plays a vital role in many engineering applications and environmental issues, which can be achieved using an oleophobic mesh that restricts the oil spreading along the mesh surface. However, unfortunately, the oil–water flow within a mesh hole could not be experimentally investigated due to the technical difficulty of observing the motion of the oil–water interface inside the mesh hole. In the present work, we use direct numerical simulation based on the level contour reconstruction method to investigate the two-phase oil–water flow through a mesh hole. Numerical solutions on two distinctive oleophilic and oleophobic surfaces are representatively compared in detail to elucidate the role of oleophobicity in oil–water separation under different external pressure gradients. Our numerical solutions indicate that the oil inertia through the mesh hole can pose a severe threat to the oil–water separation performance by forcing the contact line to spread even on a highly oleophobic surface. This inertial effect is found to be minimised by narrowing the mesh hole size. According to the numerical solutions, the narrowed hole improves not only the interfacial resistance but also the viscous dissipation that contributes to the resistance to oil penetration by dissipating the oil inertia. The effect of viscous dissipation is then discussed in terms of the regime map of oil penetration depth for various oleophobicities and external pressure gradients for two different hole sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Snoeijer, J.H., Andreotti, B.: Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Quéré, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71 (2008)

    Article  Google Scholar 

  3. Liu, D., Evans, G., He, Q.: Critical fall height for particle capture in film flotation: importance of three phase contact line velocity and dynamic contact angle. Chem. Eng. Res. Des. 114, 52 (2016)

    Article  Google Scholar 

  4. Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81(2), 739 (2009)

    Article  Google Scholar 

  5. Kumar, S.: Liquid transfer in printing processes: liquid bridges with moving contact lines. Annu. Rev. Fluid Mech. 47, 67–94 (2015)

    Article  MathSciNet  Google Scholar 

  6. Deng, Y., Peng, C., Dai, M., Lin, D., Ali, I., Alhewairini, S.S., Zheng, X., Chen, G., Li, J., Naz, I.: Recent development of super-wettable materials and their applications in oil-water separation. J. Clean. Prod. 266, 121624 (2020)

    Article  Google Scholar 

  7. Gupta, R.K., Dunderdale, G.J., England, M.W., Hozumi, A.: Oil/water separation techniques: a review of recent progresses and future directions. J. Mater. Chem. A 5(31), 16025 (2017)

    Article  Google Scholar 

  8. Adebajo, M.O., Frost, R.L., Kloprogge, J.T., Carmody, O., Kokot, S.: Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10(3), 159 (2003)

    Article  Google Scholar 

  9. Chen, L., Huang, Y., Yang, T., Bennett, P., Zheng, Z., Yang, Q., Liu, D.: Laser-structured superhydrophobic/superoleophilic aluminum surfaces for efficient oil/water separation. Environ. Sci. Pollut. Res. 27(34), 43138 (2020)

    Article  Google Scholar 

  10. Ko, T.J., Cho, S., Kim, S.J., Lee, Y.A., Jo, W., Kim, H.Y., Yang, S., Oh, K.H., Moon, M.W., et al.: Direct recovery of spilled oil using hierarchically porous oil scoop with capillary-induced anti-oil-fouling. J. Hazard. Mater. 410, 124549 (2021)

    Article  Google Scholar 

  11. Cheng, Z., Wang, J., Lai, H., Du, Y., Hou, R., Li, C., Zhang, N., Sun, K.: pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir 31(4), 1393 (2015)

    Article  Google Scholar 

  12. Yue, X., Li, Z., Zhang, T., Yang, D., Qiu, F.: Design and fabrication of superwetting fiber-based membranes for oil/water separation applications. Chem. Eng. J. 364, 292 (2019)

    Article  Google Scholar 

  13. Ikhsan, S.N.W., Yusof, N., Aziz, F., Ismail, A.F., Jaafar, J., Salleh, W.N.W., Misdan, N.: Superwetting materials for hydrophilic-oleophobic membrane in oily wastewater treatment. J. Environ. Manage. 290, 112565 (2021)

    Article  Google Scholar 

  14. Stogin, B.B., Gockowski, L., Feldstein, H., Claure, H., Wang, J., Wong, T.S.: Free-standing liquid membranes as unusual particle separators. Sci. Adv. 4(8), eaat3276 (2018)

    Article  Google Scholar 

  15. Park, S., Huang, K., Yoon, R.H.: Predicting bubble coarsening in flotation froth: Effect of contact angle and particle size. Miner. Eng. 127, 256 (2018)

    Article  Google Scholar 

  16. Sui, Y., Ding, H., Spelt, P.D.: Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Laplace, P.S.: Supplément au livre X du traité de la mécanique céleste. In: Oeuvres completes de Laplace, volume T. IV Paris, France: Courcier, p. 394 (1805)

  18. Yu, Y., Chen, H., Liu, Y., Craig, V.S., Lai, Z.: Selective separation of oil and water with mesh membranes by capillarity. Adv. Colloid Interface Sci. 235, 46 (2016)

    Article  Google Scholar 

  19. Darvishzadeh, T., Priezjev, N.V.: Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions. J. Membr. Sci. 423, 468 (2012)

    Article  Google Scholar 

  20. Wang, Y., Gong, X.: Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications. J. Mater. Chem. A 5(8), 3759 (2017)

    Article  Google Scholar 

  21. Li, J., Li, D., Yang, Y., Li, J., Zha, F., Lei, Z.: A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem. 18(2), 541 (2016)

    Article  Google Scholar 

  22. Yeom, C., Kim, Y.: Purification of oily seawater/wastewater using superhydrophobic nano-silica coated mesh and sponge. J. Ind. Eng. Chem. 40, 47 (2016)

    Article  Google Scholar 

  23. Choi, M., Son, G., Shim, W.: A level-set method for droplet impact and penetration into a porous medium. Comput. Fluids 145, 153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi, Y., Tang, G., Lin, H., Zhao, P., Cheng, L.: Dynamics of droplet and liquid layer penetration in three-dimensional porous media: a lattice Boltzmann study. Phys. Fluids 31(4), 042106 (2019)

    Article  Google Scholar 

  25. Suo, S., Liu, M., Gan, Y.: An LBM-PNM framework for immiscible flow: With applications to droplet spreading on porous surfaces. Chem. Eng. Sci. 218, 115577 (2020)

    Article  Google Scholar 

  26. Mino, Y., Hasegawa, A., Shinto, H., Matsuyama, H.: Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter: Effects of filter structure. Chem. Eng. Sci. 177, 210 (2018)

    Article  Google Scholar 

  27. Shin, S., Juric, D.: Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J. Comput. Phys. 180(2), 427 (2002)

    Article  MATH  Google Scholar 

  28. Shin, S., Abdel-Khalik, S., Daru, V., Juric, D.: Accurate representation of surface tension using the level contour reconstruction method. J. Comput. Phys. 203(2), 493 (2005)

    Article  MATH  Google Scholar 

  29. Shin, S.: Computation of the curvature field in numerical simulation of multiphase flow. J. Comput. Phys. 222(2), 872 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shin, S., Juric, D.: High order level contour reconstruction method. J. Mech. Sci. Technol. 21(2), 311 (2007)

    Article  Google Scholar 

  31. Shin, S., Juric, D.: A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques. Int. J. Numer. Meth. Fl. 60(7), 753 (2009)

    Article  MATH  Google Scholar 

  32. Shin, S., Chergui, J., Juric, D.: A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows. J. Mech. Sci. Tech. 31(4), 1739 (2017)

    Article  Google Scholar 

  33. Shin, S., Chergui, J., Juric, D.: Direct simulation of multiphase flows with modeling of dynamic interface contact angle. Theor. Comp. Fluid Dyn. 32(5), 655 (2018)

    Article  MathSciNet  Google Scholar 

  34. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201 (1981)

    Article  MATH  Google Scholar 

  35. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Badalassi, V.E., Ceniceros, H.D., Banerjee, S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190(2), 371 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yoon, I., Shin, S.: Tetra-marching procedure for high order level contour reconstruction method. WIT Trans. Eng. Sci. 69, 507 (2010)

    Article  MATH  Google Scholar 

  41. Fadlun, E., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gilmanov, A., Sotiropoulos, F.: A hybrid Cartesian/immersec boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comput. Phys. 207, 457 (2005)

    Article  MATH  Google Scholar 

  44. Yang, J., Stern, F.: A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions. J. Comput. Phys. 231, 5029 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kahouadji, L., Perinet, N., Tuckerman, L.S., Shin, S., Chergui, J., Juric, D.: Numerical simulation of supersquare patterns in Faraday waves. J. Fluid Mech. 772, (2015)

  46. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  47. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ellis, J.S., Thompson, M.: Slip and coupling phenomena at the liquid-solid interface. Phys. Chem. Chem. Phys. 6(21), 4928 (2004)

    Article  Google Scholar 

  50. Rougier, V., Cellier, J., Gomina, M., Bréard, J.: Slip transition in dynamic wetting for a generalized Navier boundary condition. J. Colloid Interface Sci. 583, 448 (2021)

    Article  Google Scholar 

  51. Chang, J., Jung, T., Choi, H., Kim, J.: Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow. J. Fluid Mech. 874, 797 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859 (2005)

    Article  Google Scholar 

  53. Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89 (2010)

    Article  Google Scholar 

  54. Maali, A., Bhushan, B.: Measurement of slip length on superhydrophobic surfaces. Philos. Trans. R. Soc. A 370(1967), 2304 (2012)

    Article  Google Scholar 

  55. Joseph, P., Tabeling, P.: Direct measurement of the apparent slip length. Phys. Rev. E 71(3), 035303 (2005)

    Article  Google Scholar 

  56. Wu, Y., Cai, M., Li, Z., Song, X., Wang, H., Pei, X., Zhou, F.: Slip flow of diverse liquids on robust superomniphobic surfaces. J. Colloid Interface Sci. 414, 9 (2014)

    Article  Google Scholar 

  57. Jing, D., Bhushan, B.: Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol. Langmuir 29(47), 14691 (2013)

    Article  Google Scholar 

  58. Qian, B., Park, J., Breuer, K.S.: Large apparent slip at a moving contact line. Phys. Fluids 27(9), 091703 (2015)

    Article  Google Scholar 

  59. Renardy, M., Renardy, Y., Li, J.: Numerical simulation of moving contact line problems using a volume-of-fluid method. J. Comput. Phys. 171(1), 243 (2001)

    Article  MATH  Google Scholar 

  60. Nam, Y., Kim, H., Shin, S.: Energy and hydrodynamic analyses of coalescence-induced jumping droplets. Appl. Phys. Lett. 103(16), 161601 (2013)

    Article  Google Scholar 

  61. Afkhami, S., Buongiorno, J., Guion, A., Popinet, S., Saade, Y., Scardovelli, R., Zaleski, S.: Transition in a numerical model of contact line dynamics and forced dewetting. J. Comput. Phys. 374, 1061 (2018)

    Article  MathSciNet  Google Scholar 

  62. Amini, A., Homsy, G.: Evaporation of liquid droplets on solid substrates. I. Flat substrate with pinned or moving contact line. Phys. Rev. Fluids 2(4), 043603 (2017)

    Article  Google Scholar 

  63. Yamamoto, Y., Ito, T., Wakimoto, T., Katoh, K.: Numerical simulations of spontaneous capillary rises with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition. Int. J. Multiph. Flow 51, 22 (2013)

    Article  Google Scholar 

  64. Wildeman, S., Visser, C.W., Sun, C., Lohse, D.: On the spreading of impacting drops. J. Fluid Mech. 805, 636 (2016)

    Article  MathSciNet  Google Scholar 

  65. Podgorska, W.: Fluid-fluid dispersions–liquid-liquid and gas-liquid systems. In: Multiphase Particulate Systems in Turbulent Flows. CRC Press, Boca Raton (2019)

  66. Gondal, M.A., Sadullah, M.S., Dastageer, M.A., McKinley, G.H., Panchanathan, D., Varanasi, K.K.: Study of factors governing oil-water separation process using \(\text{ TiO}_2\) films prepared by spray deposition of nanoparticle dispersions. ACS Appl. Mater. Interfaces 6(16), 13422 (2014)

    Article  Google Scholar 

  67. Han, J., Kim, W.K., Bae, C., Lee, D.L., Shin, S., Nam, Y.N., Lee, C.: Contact time on curved superhydrophobic surfaces. Phys. Rev. E 101, 043108 (2020)

    Article  Google Scholar 

  68. Yoon, I., Shin, S.: Direct numerical simulation of droplet collision with stationary spherical particle: a comprehensive map of outcomes. Int. J. Multi. Flow 135, 103503 (2021)

    Article  MathSciNet  Google Scholar 

  69. Bush, J.W.: Surface tension. In: New Trends in the Physics and Mechanics of Biological Systems. p. 27, Oxford University Press, Oxford (2011)

Download references

Acknowledgements

This work was supported by a KIST internal project (2E31792) and a Grant (KIMST-20210584) funded by the Korea Coast Guard. S.S. also acknowledges the support of the National Research Foundation of Korea (NRF) by a Grant funded by the Korea government (MSIT) (2020R1A2C1003822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jin Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dae Kyung Kim and Geunhyeok Choi are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.K., Choi, G., Ko, TJ. et al. Numerical investigation of oil–water separation on a mesh-type filter. Acta Mech 233, 1041–1059 (2022). https://doi.org/10.1007/s00707-022-03155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03155-0

Navigation