Skip to main content
Log in

Polarization in graphene nanoribbons with inherent defects using first-principles calculations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study demonstrates the mechanism of strain-induced polarization in defective armchair graphene nanoribbons (AGNRs) using first-principles calculations. We estimate the piezoelectric coefficients of AGNR systems with different types of defects: line, divacancy, and Stone–Wales (SW) defects. At first, we compare the results of AGNRs having non-centrosymmetric pores subjected to an axial load with the existing results of graphene as well as graphitic carbon nitrides, and we confirm that the flexoelectric effect indeed comes into picture mechanistically when the symmetry of 2D systems breaks. Then, we carry out comprehensive first-principles calculations for AGNRs with various types of defects, which usually form during the synthesis of GNRs. The calculations were performed via the simulation software, real-space grid-based projector-augmented wave (GPAW), and a Python code based on the projector-augmented wave method for density functional theory (DFT). Our research reveals that polarization can be engineered in graphene by changing the pore/defect symmetry and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data

Data are available on request from the authors.

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  2. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). https://doi.org/10.1038/nature04235

    Article  Google Scholar 

  3. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  4. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-) 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  5. Do Lee, G., Wang, C.Z., Yoon, E., Hwang, N.M., Kim, D.Y., Ho, K.M.: Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 95, 1–4 (2005). https://doi.org/10.1103/PhysRevLett.95.205501

    Article  Google Scholar 

  6. Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.97.216803

    Article  Google Scholar 

  7. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233

    Article  Google Scholar 

  8. Sanderson, K.: Graphene steps up to silicon’s challenge. Nature 132, 2876–2877 (2007). https://doi.org/10.1038/news070226-10

    Article  Google Scholar 

  9. Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12, 1224–1228 (2012). https://doi.org/10.1021/nl2035749

    Article  Google Scholar 

  10. Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys-Sol. State (1964)

  11. White, C.T., Mintmire, J.W., Mowrey, R.C., Brenner, D.W., Robertson, D.H., Harrison, J.A., Dunlap, B.I.: Predicting properties of fullerenes and their derivatives. In: Ciufolini, W.E.B. and M. (ed.) Buckminsterfullerenes. pp. 125–184. VCH Publishers (1993)

  12. Sharma, N.D., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids. 55, 2328–2350 (2007). https://doi.org/10.1016/j.jmps.2007.03.016

    Article  MATH  Google Scholar 

  13. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London. A. Math. Phys. Sci. 392, 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

    Article  MathSciNet  MATH  Google Scholar 

  14. Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013). https://doi.org/10.1146/annurev-matsci-071312-121634

    Article  Google Scholar 

  15. Mohammadi, P., Liu, L.P., Sharma, P.: A theory of flexoelectric membranes and effective properties of heterogeneous membranes. J. Appl. Mech. Trans. ASME 81, 1–11 (2014). https://doi.org/10.1115/1.4023978

    Article  Google Scholar 

  16. Javvaji, B., He, B., Zhuang, X.: The generation of piezoelectricity and flexoelectricity in graphene by breaking the materials symmetries. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aab5ad

    Article  Google Scholar 

  17. Kundalwal, S.I., Choyal, V.: Enhancing the piezoelectric properties of boron nitride nanotubes through defect engineering. Phys. E Low-Dimensional Syst. Nanostruct. 125, 114304 (2021). https://doi.org/10.1016/j.physe.2020.114304

    Article  Google Scholar 

  18. Kundalwal, S.I., Choyal, V.K., Choyal, V.: Flexoelectric effect in boron nitride–graphene heterostructures. Acta Mech. (2021). https://doi.org/10.1007/s00707-021-03022-4

    Article  MATH  Google Scholar 

  19. Dat, N.D., Quan, T.Q., Tran, P., Lam, P.T., Duc, N.D.: A first-principle study of nonlinear large amplitude vibration and global optimization of 3D penta-graphene plates based on the Bees Algorithm. Acta Mech. 231, 3799–3823 (2020). https://doi.org/10.1007/s00707-020-02706-7

    Article  MathSciNet  Google Scholar 

  20. Zhuang, X., He, B., Javvaji, B., Park, H.S.: Intrinsic bending flexoelectric constants in two-dimensional materials. Phys. Rev. B (2019). https://doi.org/10.1103/PhysRevB.99.054105

    Article  Google Scholar 

  21. Xia, X., Xu, B.X., Xiao, X., Weng, G.J.: Modeling the dielectric breakdown strength and energy storage density of graphite-polymer composites with dielectric damage process. Mater. Des. 189, 108531 (2020). https://doi.org/10.1016/j.matdes.2020.108531

    Article  Google Scholar 

  22. Xia, X., Weng, G.J., Xiao, J., Wen, W.: Porosity-dependent percolation threshold and frequency-dependent electrical properties for highly aligned graphene-polymer nanocomposite foams. Mater. Today Commun. 22, 100853 (2020). https://doi.org/10.1016/j.mtcomm.2019.100853

    Article  Google Scholar 

  23. Xia, X., Du, Z., Zhang, J., Li, J., Weng, G.J.: A hierarchical scheme from nano to macro scale for the strength and ductility of graphene/metal nanocomposites. Int. J. Eng. Sci. 162, 103476 (2021). https://doi.org/10.1016/j.ijengsci.2021.103476

    Article  MathSciNet  MATH  Google Scholar 

  24. Dumitricǎ, T., Landis, C.M., Yakobson, B.I.: Curvature-induced polarization in carbon nanoshells. Chem. Phys. Lett. 360, 182–188 (2002). https://doi.org/10.1016/S0009-2614(02)00820-5

    Article  Google Scholar 

  25. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015). https://doi.org/10.1007/s00707-015-1373-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Qu, Y., Jin, F., Yang, J.: Buckling of flexoelectric semiconductor beams. Acta Mech. 232, 2623–2633 (2021). https://doi.org/10.1007/s00707-021-02960-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5, 26–41 (2011). https://doi.org/10.1021/nn102598m

    Article  Google Scholar 

  28. Baimova, J.A.: Property control by elastic strain engineering: application to graphene. J. Micromech. Mol. Phys. 2, 1–12 (2017). https://doi.org/10.1142/S2424913017500011

    Article  Google Scholar 

  29. Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229, 2571–2584 (2018). https://doi.org/10.1007/s00707-018-2123-5

    Article  Google Scholar 

  30. Kothari, R., Kundalwal, S.I., Sahu, S.K.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229, 2787–2800 (2018). https://doi.org/10.1007/s00707-018-2145-z

    Article  Google Scholar 

  31. Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008). https://doi.org/10.1021/nl801386m

    Article  Google Scholar 

  32. Yao, W., Xiao, D., Niu, Q.: Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B Condens. Matter Mater. Phys. 77, 1–7 (2008). https://doi.org/10.1103/PhysRevB.77.235406

    Article  Google Scholar 

  33. Apte, A., Mozaffari, K., Samghabadi, F.S., Hachtel, J.A., Chang, L., Susarla, S., Idrobo, J.C., Moore, D.C., Glavin, N.R., Litvinov, D., Sharma, P., Puthirath, A.B., Ajayan, P.M.: 2D Electrets of ultrathin MoO2 with apparent piezoelectricity. Adv. Mater. 32, 2–9 (2020). https://doi.org/10.1002/adma.202000006

    Article  Google Scholar 

  34. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  35. Mortensen, J.J., Hansen, L.B., Jacobsen, K.W.: Real-space grid implementation of the projector augmented wave method. Phys. Rev. B Condens. Matter Mater. Phys. 71, 1–11 (2005). https://doi.org/10.1103/PhysRevB.71.035109

    Article  Google Scholar 

  36. Hjorth Larsen, A., JØrgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C., Hermes, E.D., Jennings, P.C., Bjerre Jensen, P., Kermode, J., Kitchin, J.R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., SchiØtz, J., Schütt, O., Strange, M., Thygesen, K.S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., Jacobsen, K.W.: The atomic simulation environment - A Python library for working with atoms. J. Phys. Condens. Matter. (2017). Doi: https://doi.org/10.1088/1361-648X/aa680e

  37. King-Smith, R.D., Vanderbilt, D.: Theory of polarization of crystalline solids. Phys. Rev. B. 47, 1651–1654 (1993). https://doi.org/10.1103/PhysRevB.47.1651

    Article  Google Scholar 

  38. Chandratre, S., Sharma, P.: Coaxing graphene to be piezoelectric. Appl. Phys. Lett. 100, 15–17 (2012). https://doi.org/10.1063/1.3676084

    Article  Google Scholar 

  39. Gui, G., Li, J., Zhong, J.: Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B Condens. Matter Mater. Phys. 78, 1–6 (2008). https://doi.org/10.1103/PhysRevB.78.075435

    Article  Google Scholar 

  40. Andreasen, C., Hao, T., Hatoum, J., Hossain, Z.M.: Strain induced second-order Jahn–Teller reconstruction and magnetic moment modulation at monovacancy in graphene. J. Appl. Phys. 130, 1–14 (2021). https://doi.org/10.1063/5.0050688

    Article  Google Scholar 

  41. Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon N. Y. 117, 462–472 (2017). https://doi.org/10.1016/j.carbon.2017.03.013

    Article  Google Scholar 

  42. Zelisko, M., Hanlumyuang, Y., Yang, S., Liu, Y., Lei, C., Li, J., Ajayan, P.M., Sharma, P.: Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms5284

    Article  Google Scholar 

Download references

Acknowledgements

The work was jointly supported by the Indian Institute of Technology Indore and the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India (DST/TMD/HFC/2K18/88). The corresponding author (SIK) has received a research grant from the DST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kundalwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevhal, S.K., Kundalwal, S.I. Polarization in graphene nanoribbons with inherent defects using first-principles calculations. Acta Mech 233, 399–411 (2022). https://doi.org/10.1007/s00707-021-03136-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03136-9

Navigation