Skip to main content
Log in

A fractional-order thermoviscoelastic analysis of a micro-rod heated by an ultrashort laser pulse heating

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

For thermoviscoelastic behaviors limited to ultrashort laser pulse technologies, the Fourier’s heat conduction law may fail; meanwhile, new models, e.g., the fractional-order heat conduction model, have been developed to modify Fourier’s law. Furthermore, it is found that the fractional-order viscoelastic models fit well with the experimental data from relaxation tests. Meanwhile, with the miniaturization of devices, the size-dependent effect on elastic deformation is becoming increasingly important. This paper addresses the transient thermoviscoelastic response of a polymer micro-rod subjected to an ultrashort laser pulse heating including the simultaneous effects of the fractional order parameter and the nonlocal parameter for the first time. The governing equations are obtained and solved by the Laplace transform method. In calculation, the influences of the magnitude of the laser intensity, the fractional-order parameter and the nonlocal parameter on the variation of the considered variables are analyzed and discussed in detail. It is hoped that the obtained results will be helpful in designing the viscoelastic micro-structures induced by a short-pulse laser heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhou, X.Q., Yu, D.Y., Shao, X.Y., Zhang, S.Q., Wang, S.: Research and applications of viscoelastic vibration damping materials: a review. Compos. Struct. 136, 460–480 (2016)

    Google Scholar 

  2. Vogt, B.D.: Mechanical and viscoelastic properties of confined amorphous polymers. J. Polym. Sci. Part B: Polym. Phys. 56(1), 9–30 (2018)

    Google Scholar 

  3. Younesian, D., Hosseinkhani, A., Askari, H., Esmailzadeh, E.: Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications. Nonlinear. Dyn. 97(1), 853–895 (2019)

    MATH  Google Scholar 

  4. Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vibr. 262, 457–474 (2003)

    Google Scholar 

  5. Currano, L.J., Currano, M., Balachandran, B.: Latching in a MEMS shock sensor: modeling and experiments. Sens. Actuators A 159(1), 41–50 (2010)

    Google Scholar 

  6. Eom, K., Park, H.S., Yoon, D.S., Kwon, T.: Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys. Rep. 503(4–5), 115–163 (2011)

    Google Scholar 

  7. Torii, A., Sasaki, M., Hane, K., Okuma, S.: Adhesive force distribution on micro-structures investigated by an atomic force microscope. Sens. Actuators A 44(2), 153–158 (1994)

    Google Scholar 

  8. Attia, M.A., Abdel Rahman, A.A.: On vibrations of functionally graded viscoelastic nanobeams with surface effects. Int. J. Eng Sci. 127, 1–32 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Pouresmaeeli, S., Ghavanloo, E., Fazelzadeh, S.A.: Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 96, 405–410 (2013)

    Google Scholar 

  10. Khorshidi, M.A.: Postbuckling of viscoelastic micro/nanobeams embedded in visco-Pasternak foundations based on the modified couple stress theory. Mech. Time-Depend Mater. 25, 265–278 (2021)

    Google Scholar 

  11. Alimirzaei, S., Mohammadimehr, M., Tounsi, A.: Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct. Eng Mech. 71(5), 485–502 (2019)

    Google Scholar 

  12. Sobhy, M., Zenkour, A.M.: The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech. Adv. Mater. Struct. 27(7), 525–538 (2020)

    Google Scholar 

  13. Allam, M.N.M., Radwan, A.F.: Nonlocal strain gradient theory for bending, buckling, and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium. Adv. Mech Eng. 11(4), 1–15 (2019)

    Google Scholar 

  14. Pang, M., Zhang, Y.Q., Chen, W.Q.: Transverse wave propagation in viscoelastic carbon nanotubes with small scale and surface effects. J. Appl. Phys. 111, 024305 (2015)

    Google Scholar 

  15. Tang, Y., Ying, L., Dong, Z.: Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory. Phys. E 84, 202–208 (2016)

    Google Scholar 

  16. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta. Metall. Mater. 42(2), 475–487 (1994)

    Google Scholar 

  17. Yu, Q., Shan, Z.W., Li, J., Huang, X.X., Xiao, L., Sun, J., Ma, E.: Strong crystal size effect on deformation twinning. Nature 463(7279), 335–338 (2010)

    Google Scholar 

  18. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length-scale. Acta. Mater. 46(14), 5109–5115 (1998)

    Google Scholar 

  19. Zhang, Y.H., Hong, J.W., Liu, B., Fang, D.N.: Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study. Nanotechnology. 21, 015701 (2010)

    Google Scholar 

  20. Momeni, K., Odegard, G.M., Yassar, R.S.: Finite size effect on the piezoelectric properties of ZnO nanobelts: a molecular dynamics approach. Acta. Mater. 60, 5117–5124 (2012)

    Google Scholar 

  21. Maranganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98(19), 195504 (2007)

    Google Scholar 

  22. Eringen, A.C.: Nonlocal continuum field theories. Springer-verlag, New York (2002)

    MATH  Google Scholar 

  23. Aifantis, E.C.: Gradient deformation models at nano, micro and macro scales. J. Eng. Mater. Technol. 121(2), 189–202 (1999)

    Google Scholar 

  24. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–3274 (2002)

    MATH  Google Scholar 

  25. Lembo, M.: Exact solutions for post-buckling deformations of nanorods. Acta Mech. 228, 2283–2298 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    MATH  Google Scholar 

  27. Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, P., Qing, H.: Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model. Acta Mech. 231, 5251–5276 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98(12), 124301 (2005)

    Google Scholar 

  30. Yu, Y.J., Tian, X.G., Liu, X.R.: Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech A-Solid. 51, 96–106 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    MathSciNet  MATH  Google Scholar 

  32. Peshkov, V.: Second sound in helium. J. Phys. 8, 381–386 (1944)

    Google Scholar 

  33. Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Cr. Phys. 247, 431–433 (1958)

    MATH  Google Scholar 

  34. Vernotte, P.M., Hebd, C.R.: Paradoxes in the continuous theory of the heat conduction. CR. Acad. Sci. Paris. 246, 3154–3155 (1958)

    MATH  Google Scholar 

  35. Lord, H.W., Shulman, Y.A.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 15, 299–309 (1967)

    MATH  Google Scholar 

  36. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    MATH  Google Scholar 

  37. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992)

    MathSciNet  Google Scholar 

  39. Ezzat, M.A., Karamany, A.S.E.I.: The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(11), 1275–1284 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Karamany, A.S.E.I., Ezzat, M.A.: On the boundary integral formulation of thermo-viscoelasticity theory. Int. J. Eng. Sci. 40(17), 1943–1956 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962)

    MathSciNet  MATH  Google Scholar 

  42. Christensen, R.M.: Theory of Viscoelasticity––An Introduction. Academic Press, New York (1971)

    Google Scholar 

  43. Peng, W., He, T.H.: Investigation on the generalized thermoelastic-diffusive problem with variable properties in three different memory-dependent effect theories. Wave. Random. Complex. (2020). https://doi.org/10.1080/17455030.2020.1857462

    Article  Google Scholar 

  44. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  45. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  46. Zhuang, Q., Yu, B., Jiang, X.Y.: An inverse problem of parameter estimation for time-fractional heat conduction in a composite medium using carbon-carbon experimental data. Phys. B 456, 9–15 (2015)

    Google Scholar 

  47. Qi, H.T., Guo, X.W.: Transient fractional heat conduction with generalized Cattaneo model. Int. J. Heat Mass Transf. 76, 535–539 (2014)

    Google Scholar 

  48. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)

    MATH  Google Scholar 

  49. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo. Cimento. 1, 161–198 (1971)

    Google Scholar 

  50. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    MATH  Google Scholar 

  51. Povstenko, Y.: Fractional heat conduction equation and associated thermal stresses. J. Therm. Stress. 28(1), 83–102 (2005)

    Google Scholar 

  52. Povstenko, Y.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stress. 34(2), 97–114 (2011)

    Google Scholar 

  53. Povstenko, Y.: Theories of thermal stresses based on space-time-fractional telegraph equations. Comp. Math. Appl. 64(10), 3321–3328 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Povstenko, Y.: Fractional Thermoelasticity. Springer, New York (2015)

    MATH  Google Scholar 

  55. Sherief, H.H., El-Sayed, A.M.A., El-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)

    MATH  Google Scholar 

  56. Youssef, H.M.: Theory of fractional order generalized thermoelasticity. J. Heat. Transfer. 132(6), 061301 (2010)

    Google Scholar 

  57. Ezzat, M.A.: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys. B 406, 30–35 (2011)

    Google Scholar 

  58. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: On Thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer. Int. J. Thermophys. 36, 1684–1697 (2015)

    Google Scholar 

  59. Sarkar, I., Mukhopadhyay, B.: Thermo-viscoelastic interaction under dual-phase-lag model with memory-dependent derivative. Wave. Random. Complex. (2020). https://doi.org/10.1080/17455030.2020.1736733

    Article  Google Scholar 

  60. Ezzat, M.A., El-Bary, A.A.: Generalized fractional magneto-thermo-viscoelasticity. Microsyst Technol. 23(6), 1767–1777 (2017)

    Google Scholar 

  61. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014)

    Google Scholar 

  62. Lim, C.W., Li, C., Yu, J.L.: Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech. Sin. 26(5), 755–765 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Li, C., Lim, C.W., Yu, J.L.: Twisting statics and dynamics for circular elastic nanosolids by nonlocal elasticity theory. Acta Mech. Solida. Sin. 24(6), 484–494 (2011)

    Google Scholar 

  64. Li, Y., He, T.H.: The transient response of a functionally graded half-space heated by a laser pulse based on the generalized thermoelasticity with memory-dependent derivative. Mech. Adv. Mater. Struct. 28(22), 2299–2309 (2021)

    Google Scholar 

  65. Brancik L (1999) Programs for fast numerical inversion of Laplace transforms in Matlab language environment. In: Proceedings of the Seventh prague Conference Matlab. Vol: 99 pp. 27–39

  66. Zhang, P., He, T.H.: A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative when subjected to a moving heat source. Wave. Random. Complex. 30(1), 142–156 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11972176, 12062011) and the Incubation Programme of Excellent Doctoral Dissertation-Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Chen, L. & He, T. A fractional-order thermoviscoelastic analysis of a micro-rod heated by an ultrashort laser pulse heating. Acta Mech 233, 383–397 (2022). https://doi.org/10.1007/s00707-021-03134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03134-x

Navigation