Skip to main content
Log in

Time-domain spectral finite element based on third-order theory for efficient modelling of guided wave propagation in beams and panels

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We develop a computationally efficient time-domain spectral finite element (SFE) based on Levinson–Bickford–Reddy’s third-order theory to accurately predict guided wave propagation in beam- and panel-type structures. The deflection is interpolated using the \(\hbox {C}^1\)-continuous Lobatto spectral interpolation function recently developed by the authors, while the axial displacement and shear rotation are interpolated using the \(\hbox {C}^0\)-continuous Lobatto basis functions. A comprehensive numerical study assesses the accuracy and efficiency of the developed element for free vibration and wave propagation response of beams and infinite strips under narrowband tone burst and broadband impact excitations. In terms of accuracy, convergence, and computational effort, we show that the new spectral element performs far better than its conventional counterpart and other available one-dimensional spectral elements with a similar number of degrees of freedom. Although SFEs in the literature often use under-integration for mass matrices to make them diagonal or near-diagonal to gain efficiency, we evaluate the relative performance of full integration and under-integration of mass matrices in terms of convergence rate and computational efficiency. The element will be of immense use for model-based structural health monitoring applications requiring fast and accurate analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Agrahari, J.K., Kapuria, S.: A refined Lamb wave time-reversal method with enhanced sensitivity for damage detection in isotropic plates. J. Intell. Mater. Syst. Struct. 27(10), 1283–1305 (2016)

    Google Scholar 

  2. Agrahari, J.K., Kapuria, S.: Active detection of block mass and notch-type damages in metallic plates using a refined time-reversed Lamb wave technique. Struct. Control. Health Monit. 25(2), e2064 (2018)

    Google Scholar 

  3. Ahmed, A., Kapuria, S.: Third order theory based quadrilateral element for delaminated composite plates with a hybrid method for satisfying continuity at delamination fronts. Compos. Struct. 181, 84–95 (2017)

    Google Scholar 

  4. Bickford, W.B.: A consistent higher order beam theory. Dev. Theoret. Appl. Mech. 11, 137–150 (1982)

    Google Scholar 

  5. Chakrabarti, A., Sheikh, A., Griffith, M., Oehlers, D.: Dynamic response of composite beams with partial shear interaction using a higher-order beam theory. J. Struct. Eng. 139(1), 47–56 (2013)

    Google Scholar 

  6. Chakraborty, A., Gopalakrishnan, S.: A spectral finite element model for wave propagation analysis in laminated composite plate. J. Vib. Acoust. 128(4), 477–488 (2006)

    Google Scholar 

  7. Datta, S.K., Shah, A.H., Bratton, R., Chakraborty, T.: Wave propagation in laminated composite plates. J. Acoust. Soc. Am. 83(6), 2020–2026 (1988)

    Google Scholar 

  8. Dong, S.B., Alpdogan, C., Taciroglu, E.: Much ado about shear correction factors in Timoshenko beam theory. Int. J. Solids Struct. 47(13), 1651–1665 (2010)

    MATH  Google Scholar 

  9. Doyle, J.F.: A spectrally formulated finite element for longitudinal wave propagation. Int. J. Anal. Exp. Modal Anal. 3, 1–5 (1988)

    Google Scholar 

  10. Doyle, J.F.: Wave Propagation in Structures. Springer, New York (1997)

    MATH  Google Scholar 

  11. Feldman, M.: Hilbert Transform Applications in Mechanical Vibration. Wiley, Chichester (2011)

    Google Scholar 

  12. Fritzen, C., Schulte, R., Jung, H.: A modelling approach for virtual development of wave based SHM systems. J. Phys. Conf. Ser. 305, 012071 (2011)

    Google Scholar 

  13. Gao, X.L., Zhang, G.: A microstructure-and surface energy-dependent third-order shear deformation beam model. Z. Angew. Math. Phys. 66(4), 1871–1894 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Ge, L., Wang, X., Wang, F.: Accurate modeling of PZT-induced Lamb wave propagation in structures by using a novel spectral finite element method. Smart Mater. Struct. 23(9), 095018 (2014)

    Google Scholar 

  15. Giurgiutiu, V.: Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J. Intell. Mater. Syst. Struct. 16(4), 291–305 (2005)

    Google Scholar 

  16. Gómez Muñoz, C.Q., García Márquez, F.P., Hernández Crespo, B., Makaya, K.: Structural health monitoring for delamination detection and location in wind turbine blades employing guided waves. Wind Energy 22(5), 698–711 (2019)

    Google Scholar 

  17. Gopalakrishnan, S., Martin, M., Doyle, J.: A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams. J. Sound Vib. 158(1), 11–24 (1992)

    MATH  Google Scholar 

  18. Ha, S., Chang, F.K.: Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates. Smart Mater. Struct. 19(1), 015015 (2009)

    Google Scholar 

  19. Hajheidari, H., Mirdamadi, H.R.: Frequency-dependent vibration analysis of symmetric cross-ply laminated plate of Levy-type by spectral element and finite strip procedures. Appl. Math. Model. 37(12–13), 7193–7205 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Han, S., Palazotto, A.N., Leakeas, C.L.: Finite-element analysis of Lamb wave propagation in a thin aluminium plate. J. Aerosp. Eng. 22, 185–197 (2009)

    Google Scholar 

  21. He, S., Ng, C.T.: Modelling and analysis of nonlinear guided waves interaction at a breathing crack using time-domain spectral finite element method. Smart Mater. Struct. 26(8), 085002 (2017)

    Google Scholar 

  22. Heyliger, P., Reddy, J.: A higher order beam finite element for bending and vibration problems. J. Sound Vib. 126(2), 309–326 (1988)

    MATH  Google Scholar 

  23. Hu, N., Fukunaga, H., Kameyama, M., Aramaki, Y., Chang, F.: Vibration analysis of delaminated composite beams and plates using a higher-order finite element. Int. J. Mech. Sci. 44(7), 1479–1503 (2002)

    MATH  Google Scholar 

  24. Kacimi, A.E., Laghrouche, O.: Improvement of PUFEM for the numerical solution of high-frequency elastic wave scattering on unstructured triangular mesh grids. Int. J. Numer. Meth. Eng. 84, 330–350 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Kannusamy, M., Kapuria, S., Sasmal, S.: Accurate baseline-free damage localization in plates using refined Lamb wave time-reversal method. Smart Mater. Struct. 29(5), 055044 (2020)

    Google Scholar 

  26. Kapuria, S.: An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers. Int. J. Solids Struct. 38(50–51), 9179–9199 (2001)

    MATH  Google Scholar 

  27. Kapuria, S., Jain, M.: A C\(^1\)-continuous time domain spectral finite element for wave propagation analysis of Euler-Bernoulli beams. Int. J. Numer. Meth. Eng. 122(11), 2631–2652 (2021)

    MathSciNet  Google Scholar 

  28. Kapuria, S., Kumar, A.: A wave packet enriched finite element for electroelastic wave propagation problems. Int. J. Mech. Sci. 170, 105081 (2020)

    Google Scholar 

  29. Kim, Y., Ha, S., Chang, F.K.: Time-domain spectral element method for built-in piezoelectric-actuator-induced Lamb wave propagation analysis. AIAA J. 46(3), 591–600 (2008)

    Google Scholar 

  30. Kudela, P., Krawczuk, M., Ostachowicz, W.: Wave propagation modelling in 1D structures using spectral finite elements. J. Sound Vib. 300(1–2), 88–100 (2007)

    MATH  Google Scholar 

  31. Kudela, P., Ostachowicz, W.M.: Wave propagation modelling in composite plates. Appl. Mech. Mater. 9, 89–104 (2008)

    Google Scholar 

  32. Kumar, A., Kapuria, S.: An enriched finite element method for general wave propagation problems using local element domain harmonic enrichment functions. Arch. Appl. Mech. 88(9), 1573–1594 (2018)

    Google Scholar 

  33. Lamb, H.: On waves in an elastic plate. Proc. R. Soc. Lond. Ser. A 93(648), 114–128 (1917)

    MATH  Google Scholar 

  34. Lee, R., Cangellaris, A.C.: A study of discretization error in the finite element approximation of wave solutions. IEEE Trans. Antenna Propag. 40(5), 542–549 (1992)

    Google Scholar 

  35. Leung, A.Y.T.: Dynamic Stiffness and Substructures. Springer, London (1993)

    Google Scholar 

  36. Levinson, M.: A new rectangular beam theory. J. Sound Vib. 74(1), 81–87 (1981)

    MATH  Google Scholar 

  37. Li, F., Peng, H., Sun, X., Wang, J., Meng, G.: Wave propagation analysis in composite laminates containing a delamination using a three-dimensional spectral element method. Math. Probl. Eng. 2012, 1–19 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Lonkar, K., Chang, F.K.: Modeling of piezo-induced ultrasonic wave propagation in composite structures using layered solid spectral element. Struct. Health Monit. 13(1), 50–67 (2014)

    Google Scholar 

  39. Mace, B.R., Manconi, E.: Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib. 318(4–5), 884–902 (2008)

    Google Scholar 

  40. Mahapatra, D.R., Gopalakrishnan, S.: A spectral finite element model for analysis of axial-flexural-shear coupled wave propagation in laminated composite beams. Compos. Struct. 59(1), 67–88 (2003)

    Google Scholar 

  41. Mahmood, M., Laghrouche, O., Trevelyan, J., El Kacimi, A.: Implementation and computational aspects of a 3D elastic wave modelling by PUFEM. Appl. Math. Model. 49, 568–586 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Mead, D.: A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J. Sound Vib. 27(2), 235–260 (1973). https://doi.org/10.1016/0022-460X(73)90064-3

    Article  MATH  Google Scholar 

  43. Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Mitra, M., Gopalakrishnan, S.: Guided wave based structural health monitoring: A review. Smart Mater. Struct. 25(5), 053001 (2016)

    Google Scholar 

  45. Moser, F., Jacobs, L.J., Qu, J.: Modeling elastic wave propagation in wave guides with the finite element method. Non Destruct. Test Eval. Int. 32, 225–234 (1999)

    Google Scholar 

  46. Mukherjee, S., Gopalakrishnan, S., Ganguli, R.: Stochastic time domain spectral element analysis of beam structures. Acta Mech. 230(5), 1487–1512 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Nanda, N., Kapuria, S.: Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories. Compos. Struct. 132, 310–320 (2015)

    Google Scholar 

  48. Nanda, N., Kapuria, S.: Spectral finite element for wave propagation in curved beams. J. Vib. Acoust. 137(4), 041005 (2015)

    Google Scholar 

  49. Nanda, N., Kapuria, S., Gopalakrishnan, S.: Spectral finite element based on an efficient layerwise theory for wave propagation analysis of composite and sandwich beams. J. Sound Vib. 333(14), 3120–3137 (2014)

    Google Scholar 

  50. Ng, C.T.: Bayesian model updating approach for experimental identification of damage in beams using guided waves. Struct. Health Monit. 13(4), 359–373 (2014)

    Google Scholar 

  51. Park, I., Kim, S., Lee, U.: Dynamics and guided waves in a smart Timoshenko beam with lateral contraction. Smart Mater. Struct. 22(7), 075034 (2013)

    Google Scholar 

  52. Patera, A.T.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    MATH  Google Scholar 

  53. Peng, H., Meng, G., Li, F.: Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection. J. Sound Vib. 320(4–5), 942–954 (2009)

    Google Scholar 

  54. Pozrikidis, C.: Introduction to Finite and Spectral Element Methods using MATLAB. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  55. Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib. Digest 39(2), 91–114 (2007)

    Google Scholar 

  56. Reddy, J.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745 (1984)

    MATH  Google Scholar 

  57. Rekatsinas, C., Nastos, C., Theodosiou, T., Saravanos, D.: A time-domain high-order spectral finite element for the simulation of symmetric and anti-symmetric guided waves in laminated composite strips. Wave Motion 53, 1–19 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Rekatsinas, C.S., Saravanos, D.A.: A cubic spline layerwise time domain spectral FE for guided wave simulation in laminated composite plate structures with physically modeled active piezoelectric sensors. Int. J. Solids Struct. 124, 176–191 (2017)

    Google Scholar 

  59. Rekatsinas, C.S., Saravanos, D.A.: A time domain spectral layerwise finite element for wave structural health monitoring in composite strips with physically modeled active piezoelectric actuators and sensors. J. Intell. Mater. Syst. Struct. 28(4), 488–506 (2017)

    Google Scholar 

  60. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, New York (1999)

    Google Scholar 

  61. Salamat-talab, M., Nateghi, A., Torabi, J.: Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int. J. Mech. Sci. 57(1), 63–73 (2012)

    Google Scholar 

  62. Schulte, R.T., Fritzen, C.P.: Simulation of wave propagation in damped composite structures with piezoelectric coupling. J. Theor. Appl. Mech. 49(3), 879–903 (2011)

    Google Scholar 

  63. Shi, G., Lam, K.: Finite element vibration analysis of composite beams based on higher-order beam theory. J. Sound Vib. 219(4), 707–721 (1999)

    Google Scholar 

  64. Żak, A., Radzieński, M., Krawczuk, M., Ostachowicz, W.: Damage detection strategies based on propagation of guided elastic waves. Smart Mater. Struct. 21(3), 035024 (2012)

    Google Scholar 

Download references

Acknowledgements

S. Kapuria acknowledges the financial support for this work provided by the Science & Engineering Research Board, Department of Science and Technology, Government of India, through J. C. Bose National Fellowship (Grant No. JCB/2018/000025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kapuria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, M., Kapuria, S. Time-domain spectral finite element based on third-order theory for efficient modelling of guided wave propagation in beams and panels. Acta Mech 233, 1187–1212 (2022). https://doi.org/10.1007/s00707-021-03133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03133-y

Navigation