Skip to main content

Advertisement

Log in

Programming shape-shifting of flat bilayers composed of tough hydrogels under transient swelling

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Various actuation mechanisms are utilized in nature to control the shape-shifting and functionalities of living organisms. Shape-shifting is a common function observed in various natural structures, such as seed dispersal units, carnivorous plants, and climbing plants. Plenty of these natural materials are capable of shape-shifting due to the orientations of cellulose microfibrils and their swelling and also shrinkage in response to environmental stimuli. Inspired by nature, bio-microstructures are designed to be programmed by their shape-shifting behavior under external stimuli. According to the vast applications of smart bilayers in actuators, in this paper, we study a variety of bilayer designs that self-transform their flat shape to a complex 3D geometry. We examine different arrangements of bilayers, including different segment-patterned and stripe-patterned tough polyampholyte hydrogel-elastomer bilayers, to program several modes of shape-shifting such as self-rolling and self-twisting. In this regard, a transient coupled electro-chemo-mechanical constitutive model is implemented in a large deformation finite element framework considering the time-dependent swelling behavior of tough hydrogel. Accordingly, a generalized Maxwell model along with the Yeoh strain energy is coupled with the Nernst–Planck equation. The model parameters are calibrated using uniaxial tensile experimental tests in different loading rates and salt concentrations. Then, various shape-shiftings of flat bilayers composed of tough hydrogel and elastomer are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Copyright 2017 by the American Chemical Society)

Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. van Manen, T., Janbaz, S., Zadpoor, A.A.: Programming the shape-shifting of flat soft matter. Mater. Today 21(2), 144–163 (2018)

    Google Scholar 

  2. Janbaz, S., Hedayati, R., Zadpoor, A.A.: Programming the shape-shifting of flat soft matter: from self-rolling/self-twisting materials to self-folding origami. Mater. Horiz. 3(6), 536–547 (2016)

    Google Scholar 

  3. Ionov, L.: Polymeric actuators. Langmuir 31(18), 5015–5024 (2015)

    Google Scholar 

  4. Volkov, A.G., Foster, J.C., Ashby, T.A., Walker, R.K., Johnson, J.A., Markin, V.S.: Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant, Cell Environ. 33(2), 163–173 (2010)

    Google Scholar 

  5. Studart, A.R.: Biologically inspired dynamic material systems. Angew. Chem. Int. Ed. 54(11), 3400–3416 (2015)

    Google Scholar 

  6. Li, M., Jiang, Z., An, N., Zhou, J.: Harnessing programmed holes in hydrogel bilayers to design soft self-folding machines. Int. J. Mech. Sci. 140, 271–278 (2018)

    Google Scholar 

  7. Guo, W., Li, M., Zhou, J.: Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater. Struct. 22(11), 115028 (2013)

  8. Yuk, H., Lin, S., Ma, C., Takaffoli, M., Fang, N.X., Zhao, X.: Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8(1), 1–12 (2017)

    Google Scholar 

  9. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-H.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778), 588–590 (2000)

    Google Scholar 

  10. Niroumandi, S., Shojaeifard, M., Baghani, M.: PH-sensitive hydrogel-based valves: A transient fully-coupled fluid-solid interaction study. J. Intell. Mater. Syst. Struct. 1045389X211011671 (2021)

  11. Niroumandi, S., Shojaeifard, M., Baghani, M.: On single and multiple pH-sensitive hydrogel micro-valves: a 3D transient fully coupled fluid–solid interaction study. Transp. Porous Media 1–22 (2021)

  12. An, N., Li, M., Zhou, J.: Predicting origami-inspired programmable self-folding of hydrogel trilayers. Smart Mater. Struct. 25(11), 11LT02 (2016)

  13. Takashima, Y., Hatanaka, S., Otsubo, M., Nakahata, M., Kakuta, T., Hashidzume, A., Yamaguchi, H., Harada, A.: Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat. Commun. 3(1), 1–8 (2012)

    Google Scholar 

  14. Wang, J., Wang, J., Chen, Z., Fang, S., Zhu, Y., Baughman, R.H., Jiang, L.: Tunable, fast, robust hydrogel actuators based on evaporation-programmed heterogeneous structures. Chem. Mater. 29(22), 9793–9801 (2017)

    Google Scholar 

  15. Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013)

    Google Scholar 

  16. Shojaeifard, M., Tahmasiyan, S., Baghani, M.: Swelling response of functionally graded temperature-sensitive hydrogel valves: analytic solution and finite element method. J. Intell. Mater. Syst. Struct. (2019). https://doi.org/10.1177/1045389X19891544

    Article  Google Scholar 

  17. Shojaeifard, M., Baghani, M.: Finite deformation swelling of a temperature-sensitive hydrogel cylinder under combined extension-torsion. Appl. Math. Mech. 41(3), 409–424 (2020)

    MathSciNet  Google Scholar 

  18. Wang, S., Wang, Z., Yang, Y., Lu, T.: Swell induced stress in a hydrogel coating. Acta Mech. Sinica 1–6 (2021)

  19. Drozdov, A.D.: Volume phase transition in thermo-responsive hydrogels: constitutive modeling and structure–property relations. Acta Mech. 226(4), 1283–1303 (2015). https://doi.org/10.1007/s00707-014-1251-9

    Article  MathSciNet  Google Scholar 

  20. Bayat, M.R., Kargar-Estahbanaty, A., Baghani, M.: A semi-analytical solution for finite bending of a functionally graded hydrogel strip. Acta Mech. 230(7), 2625–2637 (2019)

    MathSciNet  Google Scholar 

  21. Shojaeifard, M., Rouhani, F., Baghani, M.: A combined analytical–numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels. J. Intell. Mater. Syst. Struct. (2019). https://doi.org/10.1177/1045389X19849253

    Article  Google Scholar 

  22. Shojaeifard, M., Baghani, M.: On the finite bending of functionally graded light-sensitive hydrogels. Meccanica 54(6), 841–854 (2019)

    MathSciNet  Google Scholar 

  23. Shojaeifard, M., Bayat, M.R., Baghani, M.: Swelling-induced finite bending of functionally graded pH-responsive hydrogels: a semi-analytical method. Appl. Math. Mech. 1–16 (2019)

  24. Huang, R., Xue, Y., Li, Z., Liu, Z.: Programmable spiral and helical deformation behaviors of hydrogel-based bi-material beam structures. Int. J. Struct. Stab. Dyn. 20(13), 2041010 (2020)

    MathSciNet  Google Scholar 

  25. Ding, H., Zhang, X.N., Zheng, S.Y., Song, Y., Wu, Z.L., Zheng, Q.: Hydrogen bond reinforced poly (1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH-responsiveness. Polymer 131, 95–103 (2017)

    Google Scholar 

  26. Lai, F., Li, H., Zou, H.: A modeling analysis for effect of elastic modulus on kinetics of ionic-strength-sensitive hydrogel. Acta Mech. 226(6), 1957–1969 (2015)

    Google Scholar 

  27. Mazaheri, H., Namdar, A.H., Ghasemkhani, A.: A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels. Acta Mech. 1–18 (2021)

  28. Niroumandi, S., Shojaeifard, M., Baghani, M.: Finite deformation of swollen pH-sensitive hydrogel cylinder under extension and torsion and its Poynting effect: analytical solution and numerical verification. Int. J. Appl. Mech. (2021)

  29. Banerjee, H., Suhail, M., Ren, H.: Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics 3(3), 15 (2018)

    Google Scholar 

  30. Gong, J.P.: Why are double network hydrogels so tough? Soft Matter 6(12), 2583–2590 (2010)

    Google Scholar 

  31. Sun, J.-Y., Zhao, X., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z.: Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012)

    Google Scholar 

  32. Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, M.A., Nakajima, T., Gong, J.P.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12(10), 932–937 (2013)

    Google Scholar 

  33. Peng, X., Li, Y., Zhang, Q., Shang, C., Bai, Q.W., Wang, H.: Tough hydrogels with programmable and complex shape deformations by ion dip-dyeing and transfer printing. Adv. Funct. Mater. 26(25), 4491–4500 (2016)

    Google Scholar 

  34. Zhou, X., Li, T., Wang, J., Chen, F., Zhou, D., Liu, Q., Li, B., Cheng, J., Zhou, X., Zheng, B.: Mechanochemical regulated origami with tough hydrogels by ion transfer printing. ACS Appl. Mater. Interfaces 10(10), 9077–9084 (2018)

    Google Scholar 

  35. Zhao, L., Huang, J., Zhang, Y., Wang, T., Sun, W., Tong, Z.: Programmable and bidirectional bending of soft actuators based on Janus structure with sticky tough PAA-clay hydrogel. ACS Appl. Mater. Interfaces 9(13), 11866–11873 (2017)

    Google Scholar 

  36. Wang, J., Li, T., Chen, F., Zhou, D., Li, B., Zhou, X., Gan, T., Handschuh-Wang, S., Zhou, X.: Softening and shape morphing of stiff tough hydrogels by localized unlocking of the trivalent ionically cross-linked centers. Macromol. Rapid Commun. 39(12), 1800143 (2018)

    Google Scholar 

  37. Marcombe, R., Cai, S., Hong, W., Zhao, X., Lapusta, Y., Suo, Z.: A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6(4), 784–793 (2010)

    Google Scholar 

  38. De, S.K., Aluru, N.R., Johnson, B., Crone, W.C., Beebe, D.J., Moore, J.: Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J. Microelectromech. Syst. 11(5), 544–555 (2002)

    Google Scholar 

  39. Huyghe, J.M., Janssen, J.D.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35(8), 793–802 (1997)

    MATH  Google Scholar 

  40. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage (1991)

  41. Sasson, A., Patchornik, S., Eliasy, R., Robinson, D., Haj-Ali, R.: Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement—experimental testing and constitutive modeling. J. Mech. Behav. Biomed. Mater. 8, 143–153 (2012)

    Google Scholar 

  42. Yu, C., Malakpoor, K., Huyghe, J.M.: A three-dimensional transient mixed hybrid finite element model for superabsorbent polymers with strain-dependent permeability. Soft Matter 14(19), 3834–3848 (2018)

    Google Scholar 

  43. Mayumi, K., Marcellan, A., Ducouret, G., Creton, C., Narita, T.: Stress–strain relationship of highly stretchable dual cross-link gels: separability of strain and time effect. ACS Macro Lett. 2(12), 1065–1068 (2013)

    Google Scholar 

  44. Caccavo, D., Cascone, S., Poto, S., Lamberti, G., Barba, A.A.: Mechanics and transport phenomena in agarose-based hydrogels studied by compression-relaxation tests. Carbohydr. Polym. 167, 136–144 (2017)

    Google Scholar 

  45. Drozdov, A.D., Christiansen, J.d.: Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling. Acta Mech. 229(12), 5067–5092 (2018)

  46. Ghorbanoghli, A., Narooei, K.: A new hyper-viscoelastic model for investigating rate dependent mechanical behavior of dual cross link self-healing hydrogel. Int. J. Mech. Sci. 159, 278–286 (2019)

    Google Scholar 

  47. Xin, H., Brown, H.R., Naficy, S., Spinks, G.M.: Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels. Polymer 65, 253–261 (2015)

    Google Scholar 

  48. Cai, S., Suo, Z.: Equations of state for ideal elastomeric gels. EPL (Europhysics Letters) 97(3), 34009 (2012)

    Google Scholar 

  49. Xu, S., Liu, Z.: A nonequilibrium thermodynamics approach to the transient properties of hydrogels. J. Mech. Phys. Solids 127, 94–110 (2019)

    MathSciNet  Google Scholar 

  50. Long, R., Mayumi, K., Creton, C., Narita, T., Hui, C.-Y.: Time dependent behavior of a dual cross-link self-healing gel: theory and experiments. Macromolecules 47(20), 7243–7250 (2014)

    Google Scholar 

  51. Horkay, F., Tasaki, I., Basser, P.J.: Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromol 1(1), 84–90 (2000)

    Google Scholar 

  52. Jeans, J.: Mathematical Theory of Electricity and Magnetism. Cambridge University Press (1925)

  53. Bayat, M.R., Wang, K., Baghani, M.: Visco-hyperelastic swelling and mechanical behavior of tough pH-sensitive hydrogels: theory development and numerical implementation. Int. J. Eng. Sci. 152, 103294 (2020)

  54. Holzapfel, G.A.: Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4), 489–490 (2002)

    Google Scholar 

  55. Eichenbaum, G.M., Kiser, P.F., Dobrynin, A.V., Simon, S.A., Needham, D.: Investigation of the swelling response and loading of ionic microgels with drugs and proteins: the dependence on cross-link density. Macromolecules 32(15), 4867–4878 (1999)

    Google Scholar 

  56. Valiollahi, A., Shojaeifard, M., Baghani, M.: Closed form solutions for large deformation of cylinders under combined extension-torsion. Int. J. Mech. Sci. 157, 336–347 (2019)

    Google Scholar 

  57. Shojaeifard, M., Sheikhi, S., Baniassadi, M., Baghani, M.: On finite bending of visco-hyperelastic materials: a novel analytical solution and FEM. Acta Mech. 231(8), 3435–3450 (2020)

    MathSciNet  MATH  Google Scholar 

  58. Li, T., Wang, J., Zhang, L., Yang, J., Yang, M., Zhu, D., Zhou, X., Handschuh-Wang, S., Liu, Y., Zhou, X.: “Freezing”, morphing, and folding of stretchy tough hydrogels. J. Mater. Chem. B 5(29), 5726–5732 (2017)

    Google Scholar 

  59. Wang, Z.J., Hong, W., Wu, Z.L., Zheng, Q.: Site-specific pre-swelling-directed morphing structures of patterned hydrogels. Angew. Chem. Int. Ed. 56(50), 15974–15978 (2017)

    Google Scholar 

  60. Erb, R.M., Sander, J.S., Grisch, R., Studart, A.R.: Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4(1), 1–8 (2013)

    Google Scholar 

  61. Ma, C., Li, T., Zhao, Q., Yang, X., Wu, J., Luo, Y., Xie, T.: Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels. Adv. Mater. 26(32), 5665–5669 (2014)

    Google Scholar 

  62. Wu, Z.L., Moshe, M., Greener, J., Therien-Aubin, H., Nie, Z., Sharon, E., Kumacheva, E.: Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4(1), 1–7 (2013)

    Google Scholar 

  63. Wei, Z., Jia, Z., Athas, J., Wang, C., Raghavan, S.R., Li, T., Nie, Z.: Hybrid hydrogel sheets that undergo pre-programmed shape transformations. Soft Matter 10(41), 8157–8162 (2014)

    Google Scholar 

  64. Huang, H.-W., Sakar, M.S., Petruska, A.J., Pané, S., Nelson, B.J.: Soft micromachines with programmable motility and morphology. Nat. Commun. 7(1), 1–10 (2016)

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Baghani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaeifard, M., Niroumandi, S. & Baghani, M. Programming shape-shifting of flat bilayers composed of tough hydrogels under transient swelling. Acta Mech 233, 213–232 (2022). https://doi.org/10.1007/s00707-021-03117-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03117-y

Navigation