Skip to main content
Log in

A friction model of fractal rough surfaces accounting for size dependence at nanoscale

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Traditional laws of friction believe that the friction coefficient of two specific solids takes a constant value. However, molecular simulations revealed that the friction coefficient of nanosized asperity depends strongly on contact size and asperity radius. Since contacting surfaces are always rough consisting of asperities varying dramatically in geometric size, a theoretical model is developed to predict the friction behavior of fractal rough surfaces in this work. The result of atomic-scale simulations of sphere-on-flat friction is summarized into a uniform expression. Then, the size dependent feature of friction at nanoscale is incorporated into the analysis of fractal rough surfaces. The obtained results display the dependence of friction coefficient on roughness, material properties, and load. It is revealed that the friction coefficient decreases with increasing contact area or external load. This model gives a theoretical guideline for the prediction of friction coefficient and the design of friction pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. A—Math., Phys. Eng. Sci. 243(1233), 190–205 (1957)

    Google Scholar 

  2. Broniec, C., Lenkiewicz, W.: Static friction processes under dynamic loads and vibration. Wear 80(3), 261–271 (1982)

    Article  Google Scholar 

  3. Rabinowicz, E., Kaymaram, F.: On the mechanism of failure of particulate rigid disks. Tribol. Trans. 34(4), 618–622 (1991)

    Article  Google Scholar 

  4. Etsion, I., Amit, M.: The effect of small normal loads on the static friction coefficient for very smooth surfaces. J. Tribol.-Trans. ASME 115(3), 406–410 (1993)

    Article  Google Scholar 

  5. Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)

    Article  Google Scholar 

  6. Braun, O.M., Steenwyk, B., Warhadpande, A., Persson, B.N.J.: On the dependency of friction on load: theory and experiment. Eur. Phys. Lett. 113(5), 56002 (2016)

    Article  Google Scholar 

  7. Fortunato, G., Ciaravola, V., Furno, A., Scaraggi, M., Lorenz, B., Persson, B.N.J.: Dependency of rubber friction on normal force or load: theory and experiment. Tire Sci. Technol. 45(1), 25–54 (2017)

    Article  Google Scholar 

  8. Dangnan, F., Espejo, C., Liskiweicz, T., Gester, M., Neville, A.: Friction and wear of additive manufactured polymers in dry contact. J. Manuf. Process. 59, 238–247 (2020)

    Article  Google Scholar 

  9. Ozaki, S., Matsuura, T., Maegawa, S.: Rate-, state-, and pressure-dependent friction model based on the elastoplastic theory. Friction 8(4), 768–783 (2020)

    Article  Google Scholar 

  10. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A—Math., Phys. Eng. Sci. 295(1442), 300–319 (1966)

    Google Scholar 

  11. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)

    Article  Google Scholar 

  12. Song, H., Van der Giessen, E., Liu, X.: Strain gradient plasticity analysis of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 96, 18–28 (2016)

    Article  MathSciNet  Google Scholar 

  13. Wang, G.F., Long, J.M., Feng, X.Q.: A self-consistent model for the elastic contact of rough surfaces. Acta Mech. 226(2), 285–293 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 308(5961), 721–722 (1984)

    Article  Google Scholar 

  15. Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear 136(2), 313–327 (1990)

    Article  Google Scholar 

  16. Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)

    Article  Google Scholar 

  17. Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998)

    Article  Google Scholar 

  18. Long, J.M., Wang, G.F., Feng, X.Q., Yu, S.W.: Influence of surface tension on fractal contact model. J. Appl. Phys. 115(12), 123522 (2014)

    Article  Google Scholar 

  19. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840–3861 (2001)

    Article  Google Scholar 

  20. Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87(11), 116101 (2001)

    Article  Google Scholar 

  21. Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. Part C—J. Mech. Eng. Sci. 197, 53–59 (1983)

    Article  Google Scholar 

  22. Chang, W.R., Etsion, I., Bogy, D.B.: Adhesion model for metallic rough surfaces. J. Tribol.-Trans. ASME 110(1), 50–56 (1988)

    Article  Google Scholar 

  23. Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol.-Trans. ASME 110(1), 57–63 (1988)

    Article  Google Scholar 

  24. Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol.-Trans. ASME 125(3), 499–506 (2003)

    Article  Google Scholar 

  25. Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol.-Trans. ASME 126(1), 34–40 (2004)

    Article  Google Scholar 

  26. Homola, A.M., Israelachvili, J.N., McGuiggan, P.M., Gee, M.L.: Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 136(1), 65–83 (1990)

    Article  Google Scholar 

  27. Carpick, R.W., Agrait, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol., B 14(2), 1289–1295 (1996)

    Article  Google Scholar 

  28. Li, Q.Y., Kim, K.S.: Micromechanics of friction: effects of nanometre-scale roughness. Proc. R. Soc. A—Math., Phys. Eng. Sci. 464(2093), 1319–1343 (2008)

    Article  Google Scholar 

  29. Perčić, M., Zelenika, S., Mezić, I., Peter, R., Krstulović, N.: An experimental methodology for the concurrent characterization of multiple parameters influencing nanoscale friction. Friction 8(3), 577–593 (2020)

    Article  Google Scholar 

  30. Perčić, M., Zelenika, S., Mezić, I.: Artificial intelligence-based predictive model of nanoscale friction using experimental data. Friction 9(6), 1726–1748 (2021)

    Article  Google Scholar 

  31. Hurtado, J.A., Kim, K.S.: Scale effects in friction of single-asperity contacts. I. From concurrent slip to single-dislocation-assisted slip. Proc. R. Soc. A—Math., Phys. Eng. Sci. 455(1989), 3363–3384 (1999)

    Article  MATH  Google Scholar 

  32. Hurtado, J.A., Kim, K.S.: Scale effects in friction of single-asperity contacts. II. Multiple-dislocation-cooperated slip. Proc. R. Soc. A—Math., Phys. Eng. Sci. 455(1989), 3385–3400 (1999)

    Article  MATH  Google Scholar 

  33. Sharp, T.A., Pastewka, L., Robbins, M.O.: Elasticity limits structural superlubricity in large contacts. Phys. Rev. B 93(12), 121402 (2016)

    Article  Google Scholar 

  34. Sharp, T.A., Pastewka, L., Ligneres, V.L., Robbins, M.O.: Scale- and Load-dependent friction in commensurate sphere-on-flat contacts. Phys. Rev. B 96(15), 155436 (2017)

    Article  Google Scholar 

  35. Wang, J., Yuan, W.K., Bian, J.J., Wang, G.F.: A semi-analytical model for the scale-dependent friction of nanosized asperity. J. Phys. Commun. 4(9), 095026 (2020)

    Article  Google Scholar 

  36. Morag, Y., Etsion, I.: Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear 262(5–6), 624–629 (2007)

    Article  Google Scholar 

  37. Yuan, Y., Cheng, Y., Liu, K., Gan, L.: A revised Majumdar and Bhushan model of elastoplastic contact between rough surfaces. Appl. Surf. Sci. 425, 1138–1157 (2017)

    Article  Google Scholar 

  38. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol.-Trans. ASME 109(2), 257–263 (1987)

    Article  Google Scholar 

  39. Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002)

    Article  MATH  Google Scholar 

  40. Gao, Y.F.: A Peierls perspective on mechanisms of atomic friction. J. Mech. Phys. Solids 58(12), 2023–2032 (2010)

    Article  MATH  Google Scholar 

  41. He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284(5420), 1650–1652 (1999)

    Article  Google Scholar 

  42. Peierls, R.: The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940)

    Article  Google Scholar 

  43. Gourdon, D., Israelachvili, J.N.: Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 68(2), 021602 (2003)

    Article  Google Scholar 

  44. Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Supports from the National Natural Science Foundation of China (Grant No. 11525209) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X.M., Wang, G.F. A friction model of fractal rough surfaces accounting for size dependence at nanoscale. Acta Mech 233, 69–81 (2022). https://doi.org/10.1007/s00707-021-03109-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03109-y

Navigation