Skip to main content
Log in

A new method for suppressing nonlinear flutter and thermal buckling of composite lattice sandwich beams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Pre-stresses or axial loadings induced by deformations of adjacent structures, edge constraints or mounting inaccuracies and elastic supporting components attached to one side of the sandwich structures may affect the aerothermoelastic stability, which is an important subject in the design of supersonic aircraft. Therefore, the nonlinear flutter and thermal buckling behavior of composite lattice sandwich beams with translational springs under axial loading in supersonic airflow is investigated in this paper. In the structural modeling, the von Kármán large-deflection theory is applied to establish the stain–displacement relations. The aerodynamic pressure is evaluated by the supersonic piston theory. The differential equations of motion are obtained by Hamilton’s principle and the assumed mode method. The highlight of this study is that a new approach for limit cycle oscillation (LCO) suppression and thermal buckling elimination without changing the stiffness of the lattice sandwich structure is proposed by utilizing the axial loading and translational springs. The structural natural frequencies are obtained and compared with reference results in the literature. The influences of the axial loading and the translational springs on the nonlinear supersonic flutter and thermal buckling properties of the sandwich beams are analyzed. Numerical results indicate that the present method is effective for nonlinear flutter suppression, and the thermal buckling effect can be completely eliminated by adjusting the axial loading of the sandwich beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu, T., Deng, Z.C., Lu, T.J.: Analytical modeling and finite element simulation of the plastic collapse of sandwich beams with pin-reinforced foam cores. Int. J. Solids Struct. 45, 5127–5151 (2008)

    Article  MATH  Google Scholar 

  2. Zhang, J., Ye, Y., Qin, Q.: Large deflections of multilayer sandwich beams with metal foam cores under transverse loading. Acta Mech. 229(9), 3585–3599 (2018)

    Article  MathSciNet  Google Scholar 

  3. Xu, G.D., Wang, Z.H., Zeng, T., Cheng, S., Fang, D.N.: Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Compos. Sci. Technol. 156, 296–304 (2018)

    Article  Google Scholar 

  4. Yang, J.S., Ma, L., Chaves-Vargas, M., Huang, T.X., Schröder, K.U., Schmidt, R., Wu, L.Z.: Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels. Compos. Sci. Technol. 147, 89–99 (2017)

    Article  Google Scholar 

  5. Thamburaj, P., Sun, J.Q.: Effect of material and geometry on the sound and vibration transmission across a sandwich beam. J. Vib. Acoust. 123(2), 205–212 (2001)

    Article  Google Scholar 

  6. Chandra, N., Gopal, K.V.N., Raja, S.: Vibro-acoustic response of sandwich plates with functionally graded core. Acta Mech. 228(8), 2775–2789 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yuan, W., Song, H.W., Wang, X., Huang, C.G.: Experimental investigation on thermal buckling behavior of truss-core sandwich panels. AIAA J. 53(4), 948–957 (2014)

    Article  Google Scholar 

  8. Chai, Y., Du, S., Li, F., Zhang, C.: Vibration characteristics of simply supported pyramidal lattice sandwich plates on elastic foundation: Theory and experiments. Thin-Walled Struct. 166, 108116 (2021)

    Article  Google Scholar 

  9. Shiau, L.C., Kuo, S.Y.: Free vibration of thermally buckled composite sandwich plates. J. Vib. Acoust. 128(1), 1–7 (2006)

    Article  Google Scholar 

  10. Bhangale, R.K., Ganesan, N.: Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. J. Sound Vib. 295, 294–316 (2006)

    Article  Google Scholar 

  11. Kiani, Y.: Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. J. Therm. Stresses 39(9), 1098–1110 (2016)

    Article  Google Scholar 

  12. Li, C., Shen, H.S., Wang, H.: Thermal post-buckling of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Int. J. Mech. Sci. 152, 289–297 (2019)

    Article  Google Scholar 

  13. Iurlaro, L., Ascione, A., Gherlone, M., Mattone, M., Sciuva, M.D.: Free vibration analysis of sandwich beams using the Refined Zigzag Theory: An experimental assessment. Meccanica 50(10), 2525–2535 (2015)

    Article  Google Scholar 

  14. Yao, G., Li, F.M.: Nonlinear primary resonances of lattice sandwich beams with pyramidal truss core and viscoelastic surfaces. Acta Mech. 229(10), 4091–4100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Structures 107, 39–48 (2016)

    Article  Google Scholar 

  16. Alambeigi, K., Mohammadimehr, M., Bamdad, M., Rabczuk, T.: Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation. Acta Mech. 231, 3199–3218 (2020)

    Article  MathSciNet  Google Scholar 

  17. Farsadi, T., Asadi, D., Kurtaran, H.: Nonlinear flutter response of a composite plate applying curvilinear fiber paths. Acta Mech. 231(2), 715–731 (2020)

    Article  MathSciNet  Google Scholar 

  18. Zappino, E., Carrera, E., Cinefra, M.: Aeroelastic analysis of composite pinched panels using higher-order shell elements. J. Spacecr. Rocket. 52(3), 999–1003 (2015)

    Article  Google Scholar 

  19. Li, F.M., Song, Z.G., Sun, C.C.: Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow. Acta Mech. Solida Sin. 28(6), 639–646 (2015)

    Article  Google Scholar 

  20. Khorshidi, K., Karimi, M., Amabili, M.: Aeroelastic analysis of rectangular plates coupled to sloshing fluid. Acta Mech. 231, 3183–3198 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Amabili, M., Pellicano, F.: Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shells. J. Appl. Mech. 69(2), 117–129 (2002)

    Article  MATH  Google Scholar 

  22. Amabili, M., Pellicano, F.: Nonlinear supersonic flutter of circular cylindrical shells. AIAA J. 39(4), 564–573 (2001)

    Article  MATH  Google Scholar 

  23. Mousavi, S.B., Yazdi, A.A.: Flutter of delaminated three-phase nano-composite beam-plates. Mech. Adv. Mater. Struct. 27(7), 561–568 (2020)

    Article  Google Scholar 

  24. Yang, X.D., Yu, T.J., Zhang, W., Qian, Y.J., Yao, M.H.: Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer. Compos. Struct. 137, 105–113 (2016)

    Article  Google Scholar 

  25. Chai, Y., Li, F., Song, Z., Zhang, C.: Influence of the boundary relaxation on the flutter and thermal buckling of composite laminated panels. Aerospace Sci. Technol. 104, 106000 (2020)

    Article  Google Scholar 

  26. Asadi, H., Beheshti, A.R.: On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory. Acta Mech. 229(6), 2413–2430 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chai, Y.Y., Li, F.M., Song, Z.G.: Nonlinear flutter suppression and thermal buckling elimination for composite lattice sandwich panels. AIAA J. 57(11), 4863–4872 (2019)

    Article  Google Scholar 

  28. Zhou, K., Huang, X.C., Zhang, Z.G., Hua, H.X.: Aero-thermo-elastic flutter analysis of coupled plate structures in supersonic flow with general boundary conditions. J. Sound Vib. 430, 36–58 (2018)

    Article  Google Scholar 

  29. Zhou, K., Su, J.P., Hua, H.X.: Aero-thermo-elastic flutter analysis of supersonic moderately thick orthotropic plates with general boundary conditions. Int. J. Mech. Sci. 141, 46–57 (2018)

    Article  Google Scholar 

  30. Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow. Acta Astronaut. 140, 176–189 (2017)

    Article  Google Scholar 

  31. Chai, Y.Y., Song, Z.G., Li, F.M.: Investigations on the aerothermoelastic properties of composite laminated cylindrical shells with elastic boundaries in supersonic airflow based on the Rayleigh-Ritz method. Aerosp. Sci. Technol. 82, 534–544 (2018)

    Article  Google Scholar 

  32. Young, T.H., Lee, C.W., Chen, F.Y.: Dynamic stability of skew plates subjected to aerodynamic and random in–plane forces. J. Sound Vib. 250(3), 401–414 (2002)

    Article  Google Scholar 

  33. Epureanu, B.I., Tang, L.S., Paidoussis, M.P.: Coherent structures and their influence on the dynamics of aeroelastic panels. Int. J. Non-Linear Mech. 39(6), 977–991 (2004)

    Article  MATH  Google Scholar 

  34. Kariappa, Somashekar B.R., Shah, C.G.: Discrete element approach to flutter of skew panels with in-plane forces under yawed supersonic flow. AIAA J. 8(11), 2017–2022 (1970)

    Article  MATH  Google Scholar 

  35. Shiau, L.C., Chen, Y.S.: Effects of in-plane load on flutter of homogeneous laminated beam plates with delamination. J. Vib. Acoust. 123(1), 61–66 (2001)

    Article  Google Scholar 

  36. Asadi, H., Wang, Q.: An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow. Compos. B Eng. 116, 486–499 (2017)

    Article  Google Scholar 

  37. Yang, X.D., Zhang, W., Wang, H.B., Yao, M.H.: The nonlinear dynamical analysis of a sandwich plate with in-plane loading in supersonic flow. Int. J. Bifurc. Chaos 26(09), 1650144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Asgari, M., Kouchakzadeh, M.A.: Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow. Compos. Struct. 143, 93–102 (2016)

    Article  Google Scholar 

  39. Barzegari, M.M., Dardel, M., Fathi, A., Ghadimi, M.: Aeroelastic characteristics of cantilever wing with embedded shape memory alloys. Acta Astronaut. 79, 189–202 (2012)

    Article  Google Scholar 

  40. Guo, X., Lee, Y.Y., Mei, C.: Supersonic nonlinear panel flutter suppression using shape memory alloys. J. Aircr. 44(4), 1139–1149 (2007)

    Article  Google Scholar 

  41. Zhang, Y.W., Zhang, H., Hou, S., Xu, K.F., Chen, L.Q.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016)

    Article  Google Scholar 

  42. Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Mater. Struct. 20(5), 055013 (2011)

    Article  Google Scholar 

  43. Chai, Y.Y., Song, Z.G., Li, F.M.: Active aerothermoelastic flutter suppression of composite laminated panels with time-dependent boundaries. Compos. Struct. 179, 61–76 (2017)

    Article  Google Scholar 

  44. Farhadi, S., Hosseini-Hashemi, S.: Flutter stabilization of cantilevered plates using a bonded patch. Acta Mech. 219(3), 241–254 (2011)

    Article  MATH  Google Scholar 

  45. Hasheminejad, S.M., Motaaleghi, M.A.: Aeroelastic analysis and active flutter suppression of an electro-rheological sandwich cylindrical panel under yawed supersonic flow. Aerosp. Sci. Technol. 42, 118–127 (2015)

    Article  Google Scholar 

  46. Pacheco, D.R.Q., Marques, F.D., Ferreira, A.J.M.: Panel flutter suppression with nonlinear energy sinks: Numerical modeling and analysis. Int. J. Non-Linear Mech. 106, 108–114 (2018)

    Article  Google Scholar 

  47. Li, Q.Q., Mei, C., Huang, J.K.: Suppression of thermal postbuckling and nonlinear panel flutter motions using piezoelectric actuators. AIAA J. 45(8), 1861–1873 (2007)

    Article  Google Scholar 

  48. Chai, Y.Y., Li, F.M., Song, Z.G., Zhang, C.Z.: Aerothermoelastic flutter analysis and active vibration suppression of nonlinear composite laminated panels with time-dependent boundary conditions in supersonic airflow. J. Intell. Mater. Syst. Struct. 29(4), 653–668 (2018)

    Article  Google Scholar 

  49. Samadpour, M., Asadi, H., Wang, Q.: Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys. Eur. J. Mech. A/Solids 57, 18–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Song, Z.G., Li, F.M.: Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams. Nonlinear Dyn. 76(1), 57–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chopra, I.: Flutter of a panel supported on an elastic foundation. AIAA J. 13(5), 687–688 (1975)

    Article  Google Scholar 

  52. Goldman, B.D., Dowell, E.H.: Nonlinear oscillations of a fluttering plate resting on a unidirectional elastic foundation. AIAA J. 52(10), 2364–2368 (2014)

    Article  Google Scholar 

  53. Emam, S., Eltaher, M.A.: Buckling and postbuckling of composite beams in hygrothermal environments. Compos. Struct. 152, 665–675 (2016)

    Article  Google Scholar 

  54. Shen, H.S., Lin, F., Xiang, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 90(2), 899–914 (2017)

    Article  Google Scholar 

  55. Aydogdu, M.: Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions. Compos. Sci. Technol. 67(6), 1096–1104 (2007)

    Article  Google Scholar 

  56. Zhang, D.B., Tang, Y.Q., Ding, H., Chen, L.Q.: Parametric and internal resonance of a transporting plate with a varying tension. Nonlinear Dyn. 98(4), 2491–2508 (2019)

    Article  MATH  Google Scholar 

  57. Zhang, L.W.: On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos. Struct. 160, 824–837 (2017)

    Article  Google Scholar 

  58. Ahmed, K.M.: Free vibration of curved sandwich beams by the method of finite elements. J. Sound Vib. 18(1), 61–74 (1971)

    Article  MATH  Google Scholar 

  59. Hwu, C., Chang, W.C., Gai, H.S.: Vibration suppression of composite sandwich beams. J. Sound Vib. 272, 1–20 (2004)

    Article  Google Scholar 

  60. Lou, J., Ma, L., Wu, L.Z.: Free vibration analysis of simply supported sandwich beams with lattice truss core. Mater. Sci. Eng., B 177(19), 1712–1716 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Project Nos. 12072083, 11761131006, 11802069) and the German Research Foundation (DFG, Project No. ZH 15/30-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengming Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Y., Li, F. & Zhang, C. A new method for suppressing nonlinear flutter and thermal buckling of composite lattice sandwich beams. Acta Mech 233, 121–136 (2022). https://doi.org/10.1007/s00707-021-03107-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03107-0

Navigation