Skip to main content

On the size-dependent dynamics of curved single-walled carbon nanotubes conveying fluid based on nonlocal theory

Abstract

This paper deals with in-plane and out-of-plane thermo-mechanical vibration and stability of curved single-walled carbon nanotubes (CSWCNT) conveying fluid and subjected to thermal and magnetic fields, based on Eringen’s nonlocal elasticity and curved Euler–Bernoulli beam theory. The Kelvin–Voigt model is employed to formulate the surrounding elastic medium to enhance the stability of the system. Given the assumptions of the modified inextensibility theory for the tube proposed by Misra et al., the in-plane and out-of-plane nonlocal equations of motion and boundary conditions are extracted using the variational principle approach. The differential quadrature (DQ) method is applied to the nonlocal equations of motion and boundary conditions to obtain natural frequencies of the CSWCNT for clamped–clamped end conditions. The present study aims to investigate the influence of diverse parameters including the nonlocal parameter, temperature changes, magnetic field intensity, fluid velocity, angle of the tube, and elastic foundation coefficients on the in-plane and out-of-plane vibration and stability of the CSWCNT. It is pertinent to mention that the results obtained from the present study could serve as a benchmark for future studies of curved nanotubes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Hoseinzadeh, M.S., Khadem, S.E.: Thermoelastic vibration and damping analysis of double-walled carbon nanotubes based on shell theory. Physica E 43(6), 1146–1154 (2011)

    Article  Google Scholar 

  2. 2.

    Rezaee, M., Maleki, V.A.: An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 229(4), 644–650 (2014)

    Article  Google Scholar 

  3. 3.

    Yan, Z., Jiang, L.: Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D Appl. Phys. 44(36), 365301 (2011)

    Article  Google Scholar 

  4. 4.

    Ni, Z., Cao, X., Wang, X., Zhou, S., Zhang, C., Xu, B., Ni, Y.J.C.: Facile synthesis of copper (I) oxide nanochains and the photo-thermal conversion performance of its nanofluids. Coatings 11(7), 749 (2021)

    Article  Google Scholar 

  5. 5.

    Guo, J., Xiao, C., Gao, J., Li, G., Wu, H., Chen, L., Qian, L.J.T.I.: Interplay between counter-surface chemistry and mechanical activation in mechanochemical removal of N-faced GaN surface in humid ambient. Tribol. Int. 159, 10700 (2021)

    Article  Google Scholar 

  6. 6.

    Rudakiya, D., Patel, Y., Chhaya, U., Gupte, A.: Carbon nanotubes in agriculture: production, potential, and prospects. In: Panpatte, D.G., Jhala, Y.K. (eds.) Nanotechnology for Agriculture, pp. 121–130. Springer, Berlin (2019)

    Chapter  Google Scholar 

  7. 7.

    Patel, D.K., Kim, H.-B., Dutta, S.D., Ganguly, K., Lim, K.-T.J.M.: Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials 13(7), 1679 (2020)

    Article  Google Scholar 

  8. 8.

    Zhang, Y., Li, H., Li, C., Huang, C., Ali, H., Xu, X., Mao, C., Ding, W., Cui, X., Yang, M.: Nano-enhanced biolubricant in sustainable manufacturing: from process ability to mechanisms. Friction (2021). https://doi.org/10.1007/s40544-021-0536-y

    Article  Google Scholar 

  9. 9.

    Liu, C., Gao, X., Chi, D., He, Y., Liang, M., Wang, H.: On-line chatter detection in milling using fast kurtogram and frequency band power. Eur. J. Mech.-A/Solids (2021). https://doi.org/10.1016/j.euromechsol.2021.104341

    Article  MATH  Google Scholar 

  10. 10.

    Xiao, G., Song, K., He, Y., Wang, W., Zhang, Y., Dai, W.: Prediction and experimental research of abrasive belt grinding residual stress for titanium alloy based on analytical method. Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-07272-3

    Article  Google Scholar 

  11. 11.

    Zhang, B., Chen, Y.-X., Wang, Z.-G., Li, J.-Q., Ji, H.-H.: Influence of Mach number of main flow on film cooling characteristics under supersonic condition. Symmetry 13(1), 127 (2021). https://doi.org/10.3390/sym13010127

    Article  Google Scholar 

  12. 12.

    Natsuki, T., Lei, X.-W., Ni, Q.-Q., Endo, M.: Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium. Phys. Lett. A 374(26), 2670–2674 (2010)

    MATH  Article  Google Scholar 

  13. 13.

    Cigeroglu, E., Samandari, H.: Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method. Physica E 64, 95–105 (2014)

    Article  Google Scholar 

  14. 14.

    Soltani, P., Kassaei, A., Taherian, M.M.: Nonlinear and quasi-linear behavior of a curved carbon nanotube vibrating in an electric force field; an analytical approach. Acta Mech. Solida Sin. 27(1), 97–110 (2014)

    Article  Google Scholar 

  15. 15.

    Zhang, M., Zhang, L., Tian, S., Zhang, X., Guo, J., Guan, X., Xu, P.J.C.: Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge. Chemosphere 253, 1266 (2020)

    Google Scholar 

  16. 16.

    Mukherjee, A., Majumdar, S., Servin, A.D., Pagano, L., Dhankher, O.P., White, J.C.J.: Carbon nanomaterials in agriculture: a critical review. Front. Plant. Sci. 7, 172 (2016)

    Article  Google Scholar 

  17. 17.

    Liu, C., Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings. Int. J. Struct. Stab. Dyn. 14(03), 1350067 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Ke, L.-L., Wang, Y.-S., Wang, Z.-D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94(6), 2038–2047 (2012)

    Article  Google Scholar 

  19. 19.

    Murmu, T., McCarthy, M.A., Adhikari, S.: Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. J. Appl. Phys. 111(11), 113511 (2012)

    Article  Google Scholar 

  20. 20.

    Xu, X., Karami, B., Shahsavari, D.: Time-dependent behavior of porous curved nanobeam. Int. J. Eng. Sci. 160, 103455 (2021). https://doi.org/10.1016/j.ijengsci.2021.103455

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Zhao, X., Chen, B., Li, Y., Zhu, W., Nkiegaing, F., Shao, Y.: Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J. Sound Vib. 464, 115001 (2020). https://doi.org/10.1016/j.jsv.2019.115001

    Article  Google Scholar 

  22. 22.

    Zhao, X., Zhu, W., Li, Y.: Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green’s functions. J. Sound Vib. 481, 115407 (2020). https://doi.org/10.1016/j.jsv.2020.115407

    Article  Google Scholar 

  23. 23.

    Cui, X., Li, C., Ding, W., Chen, Y., Mao, C., Xu, X., Liu, B., Wang, D., Li, H.N., Zhang, Y.: Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin. J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.08.011

    Article  Google Scholar 

  24. 24.

    Dini, A., Nematollahi, M.A., Hosseini, M.: Analytical solution for magneto-thermo-elastic responses of an annular functionally graded sandwich disk by considering internal heat generation and convective boundary condition. J. Sandwich Struct. Mater. 23(2), 542–567 (2021)

    Article  Google Scholar 

  25. 25.

    Hosseini, M., Dini, A.: Magneto-thermo-elastic response of a rotating functionally graded cylinder. Struct. Eng. Mech. 56(1), 137–156 (2015)

    Article  Google Scholar 

  26. 26.

    Dini, A., Abolbashari, M.H.: Hygro-thermo-electro-elastic response of a functionally graded piezoelectric cylinder resting on an elastic foundation subjected to non-axisymmetric loads. Int. J. Press. Vessels Pip. 147, 21–40 (2016)

    Article  Google Scholar 

  27. 27.

    Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)

    MATH  Article  Google Scholar 

  28. 28.

    Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(2), 0235 (2008)

    Article  Google Scholar 

  29. 29.

    Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E 41(9), 1651–1655 (2009)

    Article  Google Scholar 

  30. 30.

    Wang, L.: Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Physica E 41(10), 1835–1840 (2009)

    Article  Google Scholar 

  31. 31.

    Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)

    Article  Google Scholar 

  32. 32.

    Ma, H., Gao, X., Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Yin, L., Qian, Q., Wang, L., Xia, W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sin. 23(5), 386–393 (2010)

    Article  Google Scholar 

  34. 34.

    Ansari, R., Ashrafi, M.A., Hosseinzadeh, S.: Vibration characteristics of piezoelectric microbeams based on the modified couple stress theory. Shock. Vib. 2014, 1–12 (2014)

    Google Scholar 

  35. 35.

    Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    MATH  Article  Google Scholar 

  36. 36.

    Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8, 231–282 (1997)

    Article  Google Scholar 

  37. 37.

    Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95(1), 299 (1999)

    Article  Google Scholar 

  38. 38.

    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    MATH  Article  Google Scholar 

  39. 39.

    Dini, A., Shariati, M., Zarghami, F., Nematollahi, M.A.: Size-dependent analysis of a functionally graded piezoelectric micro-cylinder based on the strain gradient theory with the consideration of flexoelectric effect: plane strain problem. Braz. Soc. Mech. Sci. Eng. 42(8), 1–22 (2020)

    Google Scholar 

  40. 40.

    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703 (1983)

    Article  Google Scholar 

  41. 41.

    Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  42. 42.

    Şimşek, M., Yurtcu, H.H.: Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  43. 43.

    Hosseini-Hashemi, S., Bedroud, M., Nazemnezhad, R.: An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Compos. Struct. 103, 108–118 (2013)

    MATH  Article  Google Scholar 

  44. 44.

    Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos. Struct. 111, 522–529 (2014)

    Article  Google Scholar 

  45. 45.

    Wang, W., Li, P., Jin, F., Wang, J.: Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)

    Article  Google Scholar 

  46. 46.

    Izadpanahi, E., Moshtaghzadeh, M., Radnezhad, H. R., Mardanpour, P.: Constructal approach to design of wing cross-section for better flow of stresses. In: Proceedings AIAA Scitech 2020 Forum, p. 0275

  47. 47.

    Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nano. 2(2), 87–94 (2007)

    Article  Google Scholar 

  48. 48.

    Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., Boumia, L.: The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 41(22), 225404 (2008)

    Article  Google Scholar 

  49. 49.

    Murmu, T., Pradhan, S.C.: Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46(4), 854–859 (2009)

    Article  Google Scholar 

  50. 50.

    Soltani, P., Taherian, M.M., Farshidianfar, A.: Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. J. Phys. D Appl. Phys. 43(42), 425401 (2010)

    Article  Google Scholar 

  51. 51.

    Xia, W., Wang, L.: Vibration characteristics of fluid-conveying carbon nanotubes with curved longitudinal shape. Comput. Mater. Sci. 49(1), 99–103 (2010)

    MathSciNet  Article  Google Scholar 

  52. 52.

    Rafiei, M., Mohebpour, S.R., Daneshmand, F.: Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E 44(7–8), 1372–1379 (2012)

    Article  Google Scholar 

  53. 53.

    Baghdadi, H., Tounsi, A., Zidour, M., Benzair, A.: Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory. Full. Nanotub. Carbon Nanostruct. 23(3), 266–272 (2015)

    Article  Google Scholar 

  54. 54.

    Ansari, R., Norouzzadeh, A., Gholami, R., Faghih Shojaei, M., Darabi, M.A.: Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects. Microfluid. Nanofluid. (2016). https://doi.org/10.1007/s10404-015-1669-y

    Article  Google Scholar 

  55. 55.

    Bahaadini, R., Hosseini, M.: Nonlocal divergence and flutter instability analysis of embedded fluid-conveying carbon nanotube under magnetic field. Microfluid. Nanofluid. 20(7), 108 (2016)

    Article  Google Scholar 

  56. 56.

    Xu, K.Y., Guo, X.N., Ru, C.Q.: Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces. J. Appl. Phys. 99(6), 064303 (2006)

    Article  Google Scholar 

  57. 57.

    Ke, L.L., Xiang, Y., Yang, J., Kitipornchai, S.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47(2), 409–417 (2009)

    Article  Google Scholar 

  58. 58.

    Zhen, Y.-X., Fang, B., Tang, Y.: Thermal–mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium. Physica E 44(2), 379–385 (2011)

    Article  Google Scholar 

  59. 59.

    Karličić, D., Adhikari, S., Murmu, T., Cajić, M.: Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system. Compos. B Eng. 66, 328–339 (2014)

    Article  Google Scholar 

  60. 60.

    Karličić, D., Kozić, P., Pavlović, R.: Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium. Compos. Struct. 115, 89–99 (2014)

    Article  Google Scholar 

  61. 61.

    Kiani, K.: Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories. Physica E 57, 179–192 (2014)

    Article  Google Scholar 

  62. 62.

    Zhang, L.L., Liu, J.X., Fang, X.Q., Nie, G.Q.: Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. Eur. J. Mech. A. Solids 46, 22–29 (2014)

    Article  Google Scholar 

  63. 63.

    Daneshmehr, A., Rajabpoor, A., Hadi, A.: Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories. Int. J. Eng. Sci. 95, 23–35 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Ansari, R., Shahabodini, A., Faghih Shojaei, M.: Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations. Physica E 76, 70–81 (2016)

    Article  Google Scholar 

  65. 65.

    Hosseini, M., Bahreman, M., Jamalpoor, A.: Thermomechanical vibration analysis of FGM viscoelastic multi-nanoplate system incorporating the surface effects via nonlocal elasticity theory. Microsyst. Technol. 23(8), 3041–3058 (2017)

    Article  Google Scholar 

  66. 66.

    Moshtaghzadeh, M., Izadpanahi, E., Mardanpour, P.J.E.S.: Stability analysis of an origami helical antenna using geometrically exact fully intrinsic nonlinear composite beam theory. Eng. Struct. 234, 111894 (2021)

    Article  Google Scholar 

  67. 67.

    Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater. Struct. 23(12), 1250 (2014)

    Article  Google Scholar 

  68. 68.

    Ke, L., Wang, Y., Reddy, J.J.C.S.: Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos. Struct. 116, 626–636 (2014)

    Article  Google Scholar 

  69. 69.

    Rouhi, H., Ansari, R., Darvizeh, M.: Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. App. Math. Model. 40(4), 3128–3140 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  70. 70.

    Ansari, R., Gholami, R., Norouzzadeh, A.: Size-dependent thermo-mechanical vibration and instability of conveying fluid functionally graded nanoshells based on Mindlin’s strain gradient theory. Thin-Walled Struct. 105, 172–184 (2016)

    Article  Google Scholar 

  71. 71.

    Razavi, H., Babadi, A.F., Beni, Y.: Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos. Struct. 160, 1299–1309 (2017)

    Article  Google Scholar 

  72. 72.

    Li, T., Dai, Z., Yu, M., Zhang, W.: Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths. Eng. Appl. Comput. Fluid Mech. 15(1), 549–560 (2021)

    Google Scholar 

  73. 73.

    Lan, Z., Zhao, Y., Zhang, J., Jiao, R., Khan, M.N., Sial, T.A., Si, B.: Long-term vegetation restoration increases deep soil carbon storage in the Northern Loess Plateau. Sci Rep 11(1), 1–11 (2021)

    Article  Google Scholar 

  74. 74.

    Thai, H.-T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  75. 75.

    Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. B Eng. 42(4), 934–937 (2011)

    Article  Google Scholar 

  76. 76.

    Hao, N., Jian, Y.: Instability analysis of carbon nanotubes conveying viscoelastic fluid. J Phys. D App. Phys. 53(11), 1101 (2020)

    Article  Google Scholar 

  77. 77.

    Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  78. 78.

    Ghadiri, M., Shafiei, N., Safarpour, H.: Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst. Technol. 23(4), 1045–1065 (2017)

    Article  Google Scholar 

  79. 79.

    Ansari, R., Arash, B.: Nonlocal Flügge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions. J. Appl. Mech. 80(2), 021006–021012 (2013)

    Article  Google Scholar 

  80. 80.

    Aria, A.I., Friswell, M.I.: A nonlocal finite element model for buckling and vibration of functionally graded nanobeams. Compos. B Eng. 166, 233–246 (2019)

    Article  Google Scholar 

  81. 81.

    Zhang, D., Lei, Y., Shen, Z.: Effect of longitudinal magnetic field on vibration response of double-walled carbon nanotubes embedded in viscoelastic medium. Acta Mech. Solida Sin. 31(2), 187–206 (2018)

    Article  Google Scholar 

  82. 82.

    Xu, K.-Y., Aifantis, E.C., Yan, Y.-H.: Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes. J. Appl. Mech. 75(2), 021013–021019 (2008)

    Article  Google Scholar 

  83. 83.

    Atashafrooz, M., Bahaadini, R., Sheibani, H.R.: Nonlocal, strain gradient and surface effects on vibration and instability of nanotubes conveying nanoflow. Mech. Adv. Mater. Struct. 27(7), 586–598 (2020)

    Article  Google Scholar 

  84. 84.

    Ansari, R., Gholami, R., Ajori, S.: Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. J. Vib. Acoust. 135(5), 051016–051016 (2013)

    Article  Google Scholar 

  85. 85.

    Wang, Y.-Z., Li, F.-M., Kishimoto, K.: Effects of axial load and elastic matrix on flexural wave propagation in nanotube with nonlocal Timoshenko beam model. J. Vib. Acoust. 134(3), 031011–031017 (2012)

    Article  Google Scholar 

  86. 86.

    Misra, A.K., Païdoussis, M.P., Van, K.S.: On the dynamics of curved pipes transporting fluid Part II: extensible theory. J. Fluids Struct. 2(3), 245–261 (1988)

    MATH  Article  Google Scholar 

  87. 87.

    Misra, A.K., Païdoussis, M.P., Van, K.S.: On the dynamics of curved pipes transporting fluid. Part I: Inextensible theory. J. Fluids Struct. 2(3), 221–244 (1988)

    MATH  Article  Google Scholar 

  88. 88.

    Liang, F., Yang, X.-D., Bao, R.-D., Zhang, W.: Frequency analysis of functionally graded curved pipes conveying fluid. Adv. Mater. Sci. Eng. 2016, 1–9 (2016)

    Google Scholar 

  89. 89.

    Zhai, H.-B., Wu, Z.-Y., Liu, Y.-S., Yue, Z.-F.: In-plane dynamic response analysis of curved pipe conveying fluid subjected to random excitation. Nucl. Eng. Des. 256, 214–226 (2013)

    Article  Google Scholar 

  90. 90.

    Chen, S.-S.: Flow-induced in-plane instabilities of curved pipes. Nucl. Eng. Des. 23(1), 29–38 (1972)

    Article  Google Scholar 

  91. 91.

    Chen, S.: Vibration and stability of a uniformly curved tube conveying fluid. J. Acoust. Soc. Am. 51(1B), 223–232 (1972)

    MATH  Article  Google Scholar 

  92. 92.

    Chen, S.-S.: Out-of-plane vibration and stability of curved tubes conveying fluid. J. Appl. Mech. 40(2), 362–368 (1973)

    Article  Google Scholar 

  93. 93.

    Dini, A., Zandi-Baghche-Maryam, A., Shariati, M.: Effects of van der Waals forces on hygro-thermal vibration and stability of fluid-conveying curved double-walled carbon nanotubes subjected to external magnetic field. Physica E 106, 156–169 (2019)

    Article  Google Scholar 

  94. 94.

    Malikan, M., Nguyen, V.B., Dimitri, R., Tornabene, F.: Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Mater. Res. Express 6(7), 075041 (2019)

    Article  Google Scholar 

  95. 95.

    Karami, H., Farid, M.: A new formulation to study in-plane vibration of curved carbon nanotubes conveying viscous fluid. J. Vib. Control 21(12), 2360–2371 (2013)

    MathSciNet  Article  Google Scholar 

  96. 96.

    Tang, M., Ni, Q., Wang, L., Luo, Y., Wang, Y.: Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 84, 1–10 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  97. 97.

    Ghavanloo, E., Rafiei, M., Daneshmand, F.: In-plane vibration analysis of curved carbon nanotubes conveying fluid embedded in viscoelastic medium. Phys. Lett. A 375(19), 1994–1999 (2011)

    Article  Google Scholar 

  98. 98.

    Mehdipour, I., Barari, A., Kimiaeifar, A., Domairry, G.: Vibrational analysis of curved single-walled carbon nanotube on a Pasternak elastic foundation. Adv. Eng. Softw. 48, 1–5 (2012)

    Article  Google Scholar 

  99. 99.

    Dai, H.L., Fu, Y.M., Dong, Z.M.: Exact solutions for functionally graded pressure vessels in a uniform magnetic field. Int. J. Solids Struct. 43(18–19), 5570–5580 (2006)

    MATH  Article  Google Scholar 

  100. 100.

    Zekios, C. L., Liu, X., Moshtaghzadeh, M., Izadpanahi, E., Radnezhad, H. R., Mardanpour, P., and Georgakopoulos, S. V.:Electromagnetic and mechanical analysis of an origami helical antenna encapsulated by fabric. In: Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p. V05BT07A045

  101. 101.

    Eringen, A.C.: Nonlocal continuum field theories. Springer, Berlin (2002)

    MATH  Google Scholar 

  102. 102.

    Ke, L.-L., Wang, Y.-S.: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater Struct 21(2), 025018 (2012)

    Article  Google Scholar 

  103. 103.

    Ebrahimi, F., Reza Barati, M.: Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams. Eur. Phys. J. Plus (2016). https://doi.org/10.1140/epjp/i2016-16346-5

    Article  MATH  Google Scholar 

  104. 104.

    Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature- A technique for the rapid solution of nonlinear partial differential equation. J. Comput. Phys. 10, 40–52 (1972)

    MathSciNet  MATH  Article  Google Scholar 

  105. 105.

    Wu, T.Y., Liu, G.R.: A differential quadrature as a numerical method to solve differential equations. Comput. Mech. 24, 197–205 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  106. 106.

    Wu, T.Y., Liu, G.R.: The generalized differential quadrature rule for initial-value differential equations. J. Sound Vib. 233(2), 195–213 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  107. 107.

    Hosseini, M., Dini, A., Eftekhari, M.: Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech. 228(5), 1563–1580 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  108. 108.

    Liu, G.R., Wu, T.Y.: Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. J. Sound Vib. 246(3), 461–481 (2001)

    Article  Google Scholar 

  109. 109.

    Bert, C.W.: Differential quadrature method in computational mechanics- a review. Appl. Mech. Rev. 49, 1–28 (1996)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Dini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dini, A., Hosseini, M. & Nematollahi, M.A. On the size-dependent dynamics of curved single-walled carbon nanotubes conveying fluid based on nonlocal theory. Acta Mech (2021). https://doi.org/10.1007/s00707-021-03081-7

Download citation