Skip to main content

Study of wave propagation in an infinite solid due to a line heat source under Moore–Gibson–Thompson thermoelasticity

Abstract

In the present work, we investigate the effect on thermal and elastic behaviour of a homogenous isotropic unbounded elastic medium caused by a continuous line heat source. The formulation of the problem is carried out for a recent generalized thermoelasticity theory based on Quintanilla–Moore–Gibson–Thompson (QMGT) heat conduction model that considers the thermal displacement and temperature rate term in the constitutive relation of heat transport. To study this problem, the potential function approach accompanied with the Laplace transform technique is applied to derive the analytical solution in the Laplace transform domain. The inversion of the Laplace transform is performed analytically by using the short-time approximation method. A detailed analysis of the analytical results is estimated for the QMGT model and compared with other generalized thermoelasticity theories described previously. The analytical solution for the field variables is further validated by graphical representation of the numerical solution of the present problem by considering the material properties of copper material. Some important observations related to this new model arising out of the present investigation are highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J Appl. Phys. 27(3), 240–253 (1956)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  Google Scholar 

  3. 3.

    Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  Google Scholar 

  4. 4.

    Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. In: Proceedings of the Royal Society London A, vol. 432. The Royal Society, pp. 171–194 (1991)

  5. 5.

    Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  8. 8.

    Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22(4–5), 451–476 (1999)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  10. 10.

    Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  11. 11.

    Straughan, B.: Heat Waves, vol. 177. Springer Science & Business Media (2011)

  12. 12.

    Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 24(12), 4020–4031 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Conti, M., Pata, V., Quintanilla, R.: Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature. Asymp. Anal. 120(1–2), 1–21 (2020)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybern. 40, 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Marchand, R., McDevitt, T., Triggiani, R.: An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math. Methods Appl. Sci. 35(15), 1896–1929 (2012)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy. Zeitschrift für angewandte Mathematik und Physik ZAMP 67(2), 17 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part II: General decay of energy. J. Differ. Equ. 259(12), 7610–7635 (2015)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Dell’Oro, F., Lasiecka, I., Pata, V.: The Moore-Gibson-Thompson equation with memory in the critical case. J. Differ. Equ. 261(7), 4188–4222 (2016)

  19. 19.

    Dell’Oro, F., Pata, V.: On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity. Appl. Math. Optim. 76(3), 641–655 (2017)

  20. 20.

    Abouelregal, A.E., Ahmed, I.E., Nasr, M.E., Khalil, K.M., Zakria, A., Mohammed, F.A.: Thermoelastic processes by a continuous heat source line in an infinite solid via Moore-Gibson-Thompson thermoelasticity. Materials 13(19), 4463 (2020)

    Article  Google Scholar 

  21. 21.

    Bazarra, N., Fernández, J.R., Quintanilla, R.: Analysis of a Moore-Gibson-Thompson thermoelastic problem. J. Comput. Appl. Math. 382, 113058 (2021)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Abouelregal, A.E., Sedighi, H.M.: A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore-Gibson-Thompson thermodiffusion theory. Appl. Phys. A 127(8), 1–14 (2021)

    Article  Google Scholar 

  23. 23.

    Pellicer, M., Quintanilla, R.: On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation. Zeitschrift für angewandte Mathematik und Physik ZAMP 71, 1–21 (2020)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Bazarra, N., Fernández, J.R., Quintanilla, R.: On the decay of the energy for radial solutions in Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids, 1081286521994258 (2021)

  25. 25.

    Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis in microbeam resonators based on Moore-Gibson-Thompson generalized thermoelasticity theory. Acta Mech. 231, 3003–3015 (2020)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Sherief, H.H., Anwar, M.N.: Problem in generalized thermoelasticity. J. Therm. Stresses 9(2), 165–181 (1986)

    Article  Google Scholar 

  27. 27.

    Dhaliwal, R.S., Majumdar, S.R., Wang, J.: Thermoelastic waves in an infinite solid caused by a line heat source. Int. J. Math. Math. Sci. 20(2), 323–334 (1997)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Chandrasekharaiah, D., Srinath, K.: Thermoelastic interactions without energy dissipation due to a line heat source. Acta Mech. 128(3), 243–251 (1998)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Ezzat, M.A.: Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions. Int. J. Eng. Sci. 33(14), 2011–2020 (1995)

    Article  Google Scholar 

  30. 30.

    Chandrasekharaiah, D.S., Murthy, H.N.: Temperature-rate-dependent thermoelastic interactions due to a line heat source. Acta Mech. 89(1–4), 1–12 (1991)

    Article  Google Scholar 

  31. 31.

    Prasad, R., Kumar, R., Mukhopadhyay, S.: Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source. Acta Mech. 217(3), 243–256 (2011)

    Article  Google Scholar 

  32. 32.

    Hetnarski, R.B.: Coupled one-dimensional thermal shock problem for small times. Arch. Mech. Stosow. 13, 295–306 (1961)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Jangid, K., Mukhopadhyay, S.: A domain of influence theorem for a natural stress-heat-flux problem in the Moore-Gibson-Thompson thermoelasticity theory. Acta Mech. 232(1), 177–187 (2021)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev 39(3), 355–376 (1986)

    Article  Google Scholar 

  35. 35.

    Maurer, M.J.: Relaxation model for heat conduction in metals. J. Appl. Phys. 40(13), 5123–5130 (1969)

    Article  Google Scholar 

  36. 36.

    Chandrasekharaiah, D.S.: One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation. J. Therm. Stresses 19, 695–710 (1996)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robin Vikram Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Different notations have been used for the solutions of field variables given by Eqs. (38)–(41) which are given as follows:

$$\begin{aligned}&c_{11}=\tau _{q},\quad c_{12}=1-\tau _{q}a_{0}, \\&c_{31}=\frac{1}{\sqrt{a_{41}}},\quad c_{32}=\frac{-a_{42}}{2\left( a_{41}\right) ^{\frac{3}{2}}}, \\&c_{61}=\frac{1}{\sqrt{b_{41}}},\quad c_{62}=\frac{-b_{42}}{2\left( b_{41}\right) ^{\frac{3}{2}}}, \\&c_{81}=\left( a_{41}\right) ^{2}-\left( b_{41}\right) ^{2},\quad c_{82}=2\left( a_{41}a_{42}+b_{41}b_{42}\right) , \\&c_{91}=\frac{1}{c_{81}},\quad c_{92}=\frac{-c_{82}}{c_{81}^{2}}, \\&d_{11}=c_{11}c_{91},d_{12}=c_{12}c_{91}+c_{11}c_{92}, \\&d_{21}=\left( a_{41}\right) ^{2}-1,\quad d_{22}=2a_{41}a_{42}, \\&d_{31}=\left( b_{41}\right) ^{2}-1,\quad d_{32}=2b_{41}b_{42}, \\&d_{41}=c_{31}d_{21},\quad d_{42}=c_{32}d_{21}+c_{31}d_{22}, \\&d_{51}=c_{61}d_{31},\quad d_{52}=c_{62}d_{31}+c_{61}d_{32}, \\&d_{61}=d_{11}d_{51},\quad d_{62}=d_{12}d_{51}+d_{11}d_{52}, \\&d_{71}=d_{11}d_{41},\quad d_{72}=d_{12}d_{41}+d_{11}d_{42}, \\&d_{81}=d_{71},\quad d_{82}=d_{72},\quad d_{83}=-d_{61},\quad d_{84}=-d_{62}, \\&d_{91}=a_{41}c_{31},\quad d_{92}=a_{42}c_{31}+a_{41}c_{32}, \\&f_{11}=b_{41}c_{61},\quad f_{12}=b_{42}c_{61}+b_{41}c_{62}, \\&f_{21}=d_{11}d_{91},\quad f_{22}=d_{12}d_{91}+d_{11}d_{92}, \\&f_{31}=d_{11}f_{11},\quad f_{32}=d_{12}f_{11}+d_{11}f_{12}, \\&f_{41}=a_{1}f_{21},\quad f_{42}=a_{1}f_{22},\quad f_{43}=-a_{1}f_{31},\quad f_{44}=-a_{1}f_{32}, \\&g_{11}=-\left( \frac{\lambda _{1}-1}{r}\right) a_{41},\quad g_{12}=-\left( \frac{\lambda _{1}-1}{r}\right) a_{42}, \\&g_{21}=-\left( \frac{\lambda _{1}-1}{r}\right) b_{41},\quad g_{22}=-\left( \frac{\lambda _{1}-1}{r}\right) b_{42}, \\&g_{31}=c_{31},\quad g_{32}=c_{32}+c_{31}g_{11}, \\&g_{41}=c_{61},\quad g_{42}=c_{62}+c_{61}g_{21}, \\&g_{51}=g_{31}d_{11},\quad g_{52}=g_{32}d_{11}+g_{31}d_{12}, \\&g_{61}=g_{41}d_{11},\quad g_{62}=g_{42}d_{11}+g_{41}d_{12}, \\&g_{71}=-g_{61},\quad g_{72}=-g_{62}, \\&g_{81}=\left( \lambda _{1}-1\right) \left( a_{41}\right) ^{2}+1,\quad g_{82}=\left( \lambda _{1}-1\right) \left( 2a_{41}a_{42}\right) +\frac{a_{41}}{r}, \\&g_{91}=\left( \lambda _{1}-1\right) \left( b_{41}\right) ^{2}+1,\quad g_{92}=\left( \lambda _{1}-1\right) \left( 2b_{41}b_{42}\right) +\frac{b_{41}}{r}, \\&h_{11}=c_{31}g_{81},\quad h_{12}=c_{31}g_{82}+c_{32}g_{81}, \\&h_{21}=c_{61}g_{91},\quad h_{22}=c_{61}g_{92}+c_{62}g_{91}, \\&h_{31}=a_{1}d_{11}h_{11},\quad h_{32}=a_{1}\left( d_{12}h_{11}+d_{11}h_{12}\right) , \\&h_{41}=a_{1}d_{11}h_{21},\quad h_{42}=a_{1}\left( d_{12}h_{21}+d_{11}h_{22}\right) , \\&h_{51}=-h_{41},\quad h_{52}=-h_{42}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R.V., Mukhopadhyay, S. Study of wave propagation in an infinite solid due to a line heat source under Moore–Gibson–Thompson thermoelasticity. Acta Mech 232, 4747–4760 (2021). https://doi.org/10.1007/s00707-021-03073-7

Download citation