Skip to main content
Log in

Reduction in vacuum phenomenon for the triple junction in the ternary Cahn–Hilliard model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, we present a modified interfacial parameter to reduce the vacuum phenomenon for the triple junction in the ternary Cahn–Hilliard (CH) equation. The triple junction is the point where three phases meet each other. In the ternary system, we interpret a position as occupied by a phase, if the concentration of the phase is larger than one-half. Therefore, it is well known that there exists a vacuum phenomenon: none of the phases exist, that is, all the concentrations are less than one-half. In the proposed method, we introduce a phase-dependent interfacial coefficient that has a constant value away from the triple junction and smaller values in the neighborhood of the triple junction, which effectively reduces the vacuum region. To validate the superiority of the proposed approach, we present the characteristic numerical experiments for the ternary system. The computational results confirm the superior performance of the proposed method over the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi, J., Cheng, L., Cao, R., Jia, Z., Liu, G.: Phase-field simulation of imbibition for the matrix-fracture of tight oil reservoirs considering temperature change. Water 13(7), 1004 (2021)

    Article  Google Scholar 

  2. Park, J.M., Anderson, P.D.: A ternary model for double-emulsion formation in a capillary microfluidic device. Lab Chip 12, 2672–2677 (2012)

    Article  Google Scholar 

  3. Fu, Y., Zhao, S., Bai, L., Jin, Y., Cheng, Y.: Numerical study of double emulsion formation in microchannels by a ternary Lattice Boltzmann method. Chem. Eng. Sci. 146, 126–134 (2016)

    Article  Google Scholar 

  4. Azarmanesh, M., Farhadi, M., Azizian, P.: Double emulsion formation through hierarchical flow-focusing microchannel. Phys. Fluid 28, 032005 (2016)

    Article  Google Scholar 

  5. Wang, N., Semprebon, C., Liu, H., Zhang, C., Kusumaatmaja, H.: Modelling double emulsion formation in planar flow-focusing microchannels. J. Fluid Mech. 895, A22 (2002)

    Article  MathSciNet  Google Scholar 

  6. Wörner, M., Samkhaniani, N., Cai, X., Wu, Y., Majumdar, A., Marschall, H., Frohnapfel, B., Deutschmann, O.: Spreading and rebound dynamics of sub-millimetre urea-water-solution droplets impinging on substrates of varying wettability. Appl. Math. Model 95, 53–73 (2021)

    Article  MathSciNet  Google Scholar 

  7. Shin, J., Yang, J., Lee, C., Kim, J.: The Navier–Stokes–Cahn–Hilliard model with a high-order polynomial free energy. Acta Mech. 231, 2425–2437 (2020)

    Article  MathSciNet  Google Scholar 

  8. Soligo, G., Roccon, A., Soldati, A.: Mass-conservation-improved phase field methods for turbulent multiphase flow simulation. Acta Mech. 230, 683–696 (2019)

    Article  MathSciNet  Google Scholar 

  9. Lee, H.G., Kim, J.: An efficient numerical method for simulating multiphase flows using a diffuse interface model. Physica A 423, 33–50 (2015)

    Article  MathSciNet  Google Scholar 

  10. Liang, H., Shi, B.C., Chai, Z.H.: Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 93, 013308 (2016)

    Article  MathSciNet  Google Scholar 

  11. Liang, H., Xu, J., Chen, J., Chai, Z., Shi, B.: Lattice Boltzmann modeling of wall-bounded ternary fluid flows. Appl. Math. Model 73, 487–513 (2019)

    Article  MathSciNet  Google Scholar 

  12. Fakhari, A., Bolster, D.: Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios. J. Comput. Phys. 334, 620–638 (2017)

    Article  MathSciNet  Google Scholar 

  13. Li, H.-L., Liu, H.-R., Ding, H.: A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis. J. Comput. Phys. 420(1), 109709 (2020)

    Article  MathSciNet  Google Scholar 

  14. Zhang, Q., Wang, X.P.: Phase field modeling and simulation of three-phase flow on solid surfaces. J. Comput. Phys. 319, 79–107 (2016)

    Article  MathSciNet  Google Scholar 

  15. Zhou, S., Xie, Y.M.: Numerical simulation of three-dimensional multicomponent Cahn–Hilliard systems. Int. J. Mech. Sci. 198, 106349 (2021)

    Article  Google Scholar 

  16. Haghani-Hassan-Abadi, R., Fakhari, A., Rahimian, M.H.: Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods. Phys. Rev. E 97, 033312 (2018)

    Article  Google Scholar 

  17. Semprebon, C., Krüger, T., Kusumaatmaja, H.: Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angels. Phys. Rev. E 93, 033305 (2016)

    Article  MathSciNet  Google Scholar 

  18. Yi, S.: A phase-field method for the numerical simulation of rigid particulate in two-phase flows. Fluid Dyn. Res. 52, 015512 (2020)

    Article  MathSciNet  Google Scholar 

  19. Jeong, D., Yang, J., Kim, J.: A practical and efficient numerical method for the Cahn–Hilliard equation in complex domains. Commun. Nonlinear Sci. Numer. Simul. 73, 217–228 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liang, H., Zhang, C., Du, R., Wei, Y.: Lattice Boltzmann method for fractional Cahn–Hilliard equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105443 (2020)

    Article  MathSciNet  Google Scholar 

  21. Yang, J., Kim, J.: An unconditionally stable second-order accurate method for systems of Cahn–Hilliard equations. Commun. Nonlinear Sci. Numer. Simul. 87, 105276 (2020)

    Article  MathSciNet  Google Scholar 

  22. Rohde, C., von Wolff, L.: A ternary Cahn–Hilliard–Navier–Stokes model for two-phase flow with precipitation and dissolution. Math. Model Methods Appl. Sci. 31(1), 1–35 (2021)

    Article  MathSciNet  Google Scholar 

  23. Haghani-Hassan-Abadi, R., Rahimian, M.H.: Axisymmetric lattice Boltzmann model for simulation of ternary fluid flows. Acta Mech. 231, 2323–2334 (2020)

    Article  MathSciNet  Google Scholar 

  24. Yang, J., Kim, J.: Linear, second-order accurate, and energy stable scheme for a ternary Cahn–Hilliard model by using Lagrange multiplier approach. Acta Appl. Math. 172, 10 (2021)

    Article  MathSciNet  Google Scholar 

  25. Li, Y., Choi, J.-I., Kim, J.: Multi-component Cahn–Hilliard system with different boundary conditions in complex domains. J. Comput. Phys. 323, 1–16 (2016)

    Article  MathSciNet  Google Scholar 

  26. Huang, Z., Lin, G., Ardekani, A.M.: A consistent and conservative model and its scheme for \(N\)-phase-\(M\)-component incompressible flows. J. Comput. Phys. 434, 110229 (2021)

    Article  MathSciNet  Google Scholar 

  27. Zhu, G., Chen, H., Li, A., Sun, S., Yao, J.: Fully discrete energy stable scheme for a phase-field moving contact line model with variable densities and viscosities. Appl. Math. Model 83, 614–639 (2020)

    Article  MathSciNet  Google Scholar 

  28. Ren, H., Zhuang, X., Trung, N.T., Rabczuk, T.: Nonlocal operator method for the Cahn–Hilliard phase field model. Commun. Nonlinear Sci. Numer. Simul. 96, 105687 (2021)

    Article  MathSciNet  Google Scholar 

  29. Lee, H.G., Shin, J., Lee, J.-Y.: A high-order convex splitting method for a non-additive Cahn–Hilliard energy functional. Mathematics 7(12), 1242 (2019)

    Article  Google Scholar 

  30. Boyer, F., Lapuerta, C.: Study of a three component Cahn–Hilliard flow model. ESAIM Math. Model Numer. Anal. 40(4), 653–687 (2006)

    Article  MathSciNet  Google Scholar 

  31. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  32. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)

    Article  MathSciNet  Google Scholar 

  33. Kim, J.: Phase field computations for ternary fluid flows. Comput. Methods Appl. Mech. Eng. 196, 4779–4788 (2007)

    Article  MathSciNet  Google Scholar 

  34. Lee, H.G., Kim, J.: Regularized Dirac delta functions for phase field models. Int. J. Numer. Methods Eng. 91, 269–288 (2012)

    Article  Google Scholar 

  35. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

    Article  MathSciNet  Google Scholar 

  36. Yang, J., Kim, J.: A phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3D space. Comput. Methods Appl. Mech. Eng. 372, 113382 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The corresponding author (J. S. Kim) was supported by the National Research Foundation (NRF), Korea, under Project BK21 FOUR. The authors thank the reviewers for their constructive comments regarding the revision of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lee, C. & Kim, J. Reduction in vacuum phenomenon for the triple junction in the ternary Cahn–Hilliard model. Acta Mech 232, 4485–4495 (2021). https://doi.org/10.1007/s00707-021-03072-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03072-8

Navigation