Skip to main content
Log in

Optimal control of the Cattaneo–Hristov heat diffusion model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the optimal control problem for Cattaneo–Hristov heat diffusion, a partial differential equation including both fractional-order Caputo–Fabrizio and integer-order derivatives, is formulated for a rigid heat conductor with finite length. The state and control functions denoting temperature and heat source, respectively, are represented by eigenfunctions to eliminate the spatial coordinate. The necessary optimality conditions corresponding to a time-dependent dynamical system are derived via Hamilton’s principle. Because the optimality system contains both integer-order and fractional-order left- and right-side Caputo–Fabrizio derivatives, it cannot be solved analytically. Therefore, a numerical method based on the Volterra integral approach combined with the forward–backward finite difference schemes is applied to solve the system. Finally, the physical behaviours of the temperature state and heat control under the variation of the fractional parameter are depicted graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, New York (2004)

    Google Scholar 

  2. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890 (1996)

    Article  MathSciNet  Google Scholar 

  3. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581 (1997)

    Article  MathSciNet  Google Scholar 

  4. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A: Math. Theor. 39(33), 10375 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14(9–10), 1291–1299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Odzijewicz, T., Malinowska, A.B., Torres, D.F.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal-Theor. 75(3), 1507–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herzallah, M.A.: Variational calculus with fractional and classical derivatives. Rom. J. Phys. 57(9–10), 1261–1269 (2012)

    MathSciNet  Google Scholar 

  11. Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)

    Article  Google Scholar 

  12. Kumar, D., Singh, J., Baleanu, D.: On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Method. Appl. Sci. 43(1), 443–457 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  14. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  15. Zhang, J., Ma, X., Li, L.: Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives. Adv. Differ. Equ. 2017(1), 1–14 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bastos, N.R.: Calculus of variations involving Caputo-Fabrizio fractional differentiation. Stat. Optim. Inf. Comput. 6(1), 12–21 (2018)

    Article  MathSciNet  Google Scholar 

  18. Abdeljawad, T., Atangana, A., Gómez-Aguilar, J.F., Jarad, F.: On a more general fractional integration by parts formulae and applications. Physica A Stat. Mech. Appl. 536, (2019)

    Article  MathSciNet  Google Scholar 

  19. Yıldız, T.A., Jajarmi, A., Yıldız, B., Baleanu, D.: New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete Contin. Dyn. Syst. Ser. S 13(3), 407–428 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Mortezaee, M., Ghovatmand, M., Nazemi, A.: An application of generalized fuzzy hyperbolic model for solving fractional optimal control problems with Caputo-Fabrizio derivative. Neural Process. Lett. 52(3), 1997–2020 (2020)

    Article  Google Scholar 

  21. Naik, P.A., Owolabi, K.M., Yavuz, M., Zu, J.: Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Soliton. Fract. 140, (2020)

    Article  MathSciNet  Google Scholar 

  22. Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135(10), 1–42 (2020)

    Article  Google Scholar 

  23. Özdemir, N., Uçar, E.: Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel. AIMS Math. 5(2), 1519–1531 (2020)

    Article  MathSciNet  Google Scholar 

  24. Kumar, D., Singh, J. (eds.): Fractional Calculus in Medical and Health Science. CRC Press, Abingdon (2020)

    Google Scholar 

  25. Bonyah, E., Gomez-Aguilar, J.F., Adu, A.: Stability analysis and optimal control of a fractional human African trypanosomiasis model. Chaos Soliton. Fract. 117, 150–160 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jajarmi, A., Ghanbari, B., Baleanu, D.: A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos 29(9), (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D.: A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos 29(8), (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sweilam, N.H., Al Mekhlafi, S.M.: Optimal control for a nonlinear mathematical model of tumor under immune suppression: a numerical approach. Optim. Control. Appl. Metal 39(5), 1581–1596 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Özdemir, N., Povstenko, Y., Avcı, D., İskender, B.B.: Optimal boundary control of thermal stresses in a plate based on time-fractional heat conduction equation. J. Therm. Stresses 37(8), 969–980 (2014)

    Article  Google Scholar 

  30. Povstenko, Y., Avcı, D., İskender Eroğlu, B.B., Özdemir, N.: Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain. Therm. Sci. 21(1 Part A), 19–28 (2017)

  31. İskender Eroğlu, B.B., Avcı, D., Özdemir, N.: Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol., A 132(3), 658–662 (2017)

  32. Lazo, J.M., Torres, D.F.M.: Variational calculus with conformable fractional derivatives. IEEE-CAA J. Autom. 4, 340–352 (2017)

    MathSciNet  Google Scholar 

  33. İskender Eroğlu, B.B., Yapışkan, D.: Local generalization of transversality conditions for optimal control problem. Math. Model. Nat. Phenom. 14(3), 310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. İskender Eroğlu, B.B., Yapışkan, D.: Generalized conformable variational calculus and optimal control problems with variable terminal conditions. AIMS Math. 5(2), 1105–1126 (2020)

    Article  MathSciNet  Google Scholar 

  35. Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757–762 (2016)

    Article  Google Scholar 

  36. Povstenko, Y.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stresses 34(2), 97–114 (2011)

    Article  Google Scholar 

  37. Povstenko, Y., Ostoja-Starzewski, M.: Doppler effect described by the solutions of the Cattaneo telegraph equation. Acta Mech. 232, 725–740 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hristov, J.: Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar, S. (ed.) Current Developments in Mathematical Sciences Volume: 1 Frontiers in Fractional Calculus, pp. 270–342. Bentham Science Publishers, Sharjah (2017)

    Google Scholar 

  39. Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffrey’s Kernel and analytical solutions. Therm. Sci. 21(2), 827–839 (2017)

    Article  MathSciNet  Google Scholar 

  40. Alkahtani, B.S.T., Atangana, A.: A note on Cattaneo–Hristov model with non–singular fading memory. Therm. Sci. 21(1 Part A), 1–7 (2017)

  41. Koca, I., Atangana, A.: Solutions of Cattaneo–Hristov model of elastic heat diffusion with Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Therm. Sci. 21(6 Part A), 2299–2305 (2017)

  42. Sene, N.: Solutions of fractional diffusion equations and Cattaneo-Hristov diffusion model. Int. J. Anal. Appl. 17(2), 191–207 (2019)

    MathSciNet  MATH  Google Scholar 

  43. İskender Eroğlu, B.B., Avcı, D.: Separable solutions of Cattaneo-Hristov heat diffusion equation in a line segment: Cauchy and source problems. Alex. Eng. J. 60(2), 2347–2353 (2021)

    Article  Google Scholar 

  44. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  45. Caputo, M., Fabrizio, M.: On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 52, 3043–3052 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Properties of the Caputo-Fabrizio fractional derivative and its distributional settings. Frac. Calc. Appl. Anal. 21(1), 29–44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Atanackovic, T.M., Janev, M., Pilipovic, S.: Wave equation in fractional Zener-type viscoelastic media involving Caputo-Fabrizio fractional derivatives. Meccanica 54, 155–167 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hristov, J.: Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels: Pragmatic approach, memory kernel correspondence requirement and analyses. Eur. Phys. J. Plus 134, 283 (2019)

    Article  Google Scholar 

  49. Cattaneo, C.: On the conduction of heat (in Italian). Atti Sem. Mat. Fis. Univ. Modena 3(1), 83–101 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Avcı.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avcı, D., Eroğlu, B.B.İ. Optimal control of the Cattaneo–Hristov heat diffusion model. Acta Mech 232, 3529–3538 (2021). https://doi.org/10.1007/s00707-021-03019-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03019-z

Navigation