Skip to main content
Log in

Theoretical study on the instability mechanism of flutter generated on a cantilevered flexible plate in three-dimensional uniform flow

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The flutter of a thin flexible plate in uniform flow is an interesting theoretical problem in fluid–structure interaction phenomena, as well as an important engineering problem. Therefore, understanding of the instability mechanism is crucial to preventing fatal defects caused by the flutter. In this study, the instability mechanism of a flexible plate in three-dimensional uniform flow is investigated in terms of the energy transfer between the plate motion and fluid flow. A theoretical aerodynamic model of the plate is developed using the unsteady lifting surface theory and linear beam theory. The aerodynamic stability of the plate is investigated by eigenvalue analysis. The developed model is validated by comparison with previous experimental results and other theoretical models. Furthermore, to understand the instability mechanism, the work done by the fluid force on the plate surface is determined, and its influence on the stability of the system is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Lee, H.G., Lee, D.G.: Design of a large LCD panel handling air conveyor with minimum air consumption. Mech. Mach. Theory 41(7), 790–806 (2006). https://doi.org/10.1016/j.mechmachtheory.2005.10.009

    Article  MATH  Google Scholar 

  2. Watanabe, Y., Suzuki, S., Sugihara, M., Sueoka, Y.: An experimental study of paper flutter. J. Fluids Struct. 16(4), 529–542 (2002). https://doi.org/10.1006/jfls.2001.0435

    Article  Google Scholar 

  3. Watanabe, Y., Isogai, K., Suzuki, S., Sugihara, M.: A theoretical study of paper flutter. J. Fluids Struct. 16(4), 543–560 (2002). https://doi.org/10.1006/jfls.2001.0436

    Article  Google Scholar 

  4. Dowell, E.H.: Flutter of infinitely long plates and shells. I: Plate. AIAA J. 4(8), 1370–1377 (1966). https://doi.org/10.2514/3.3680

    Article  Google Scholar 

  5. Theodorsen, T.: General Theory of Aerodynamics Instability and the Mechanism of Flutter. NACA Technical Report No. 496 (1935)

  6. Huang, L.: Flutter of Cantilevered Plates in Axial Flow. J. Fluids Struct. 9(2), 127–147 (1995). https://doi.org/10.1006/jfls.1995.1007

    Article  Google Scholar 

  7. Kornecki, A., Dowell, E.H., O’Brien, J.: On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47(2), 163–178 (1976). https://doi.org/10.1016/0022-460X(76)90715-X

    Article  MATH  Google Scholar 

  8. Langthjem, M.A.: On the mechanism of flutter of a flag. Acta Mech. 230(10), 3759–3781 (2019). https://doi.org/10.1007/s00707-019-02478-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Manela, A., Howe, M.S.: On the stability and sound of an unforced flag. J. Sound Vib. 321(3–5), 994–1006 (2009). https://doi.org/10.1016/j.jsv.2008.10.009

    Article  Google Scholar 

  10. Weaver, D.S., Unny, T.E.: The hydroelastic stability of a flat plate. ASME J. Appl. Mech. 37(3), 823–827 (1970). https://doi.org/10.1115/1.3408615

    Article  MATH  Google Scholar 

  11. Lemaitre, C., Hémon, P., de Langre, E.: Instability of a long ribbon hanging in axial air flow. J. Fluids Struct. 20(7), 913–925 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.04.009

    Article  Google Scholar 

  12. Guo, C.Q., Paidoussis, M.P.: Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. ASME J. Appl. Mech. 67(1), 171–176 (2000). https://doi.org/10.1115/1.321143

    Article  MATH  Google Scholar 

  13. Eloy, C., Souilliez, C., Schouveiler, L.: Flutter of a rectangular plate. J. Fluids Struct. 23(6), 904–919 (2007). https://doi.org/10.1016/j.jfluidstructs.2007.02.002

    Article  Google Scholar 

  14. Yamaguchi, N., Yokota, K., Tsujimoto, Y.: Flutter limits and behaviors of a flexible thin sheet in high-speed flow – I: analytical method for prediction of the sheet behavior. ASME J. Fluids Eng. 122(1), 65–73 (2000). https://doi.org/10.1115/1.483242

    Article  Google Scholar 

  15. Yamaguchi, N., Sekiguchi, T., Yokota, K., Tsujimoto, Y.: Flutter limits and behaviors of a flexible thin sheet in high-speed flow – II: experimental results and predicted behaviors for low mass ratios. ASME J. Fluids Eng. 122(1), 74–83 (2000). https://doi.org/10.1115/1.483228

    Article  Google Scholar 

  16. Howell, R.M., Lucey, A.D., Carpenter, P.W., Pitman, M.W.: Interaction between a cantilevered-free flexible plate and ideal flow. J. Fluids Struct. 25(3), 544–566 (2009). https://doi.org/10.1016/j.jfluidstructs.2008.12.004

    Article  Google Scholar 

  17. Gibbs, C.S., Wang, I., Dowell, E.H.: Theory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flow. J. Fluids Struct. 34, 68–83 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.06.009

    Article  Google Scholar 

  18. Hiroaki, K., Watanabe, M., Morita, R.: Flutter analysis and experiments of a rectangular sheet supported by a wire. Proc. ASME PVP2015, V004T04A009 (2015). Doi: https://doi.org/10.1115/PVP2015-45061

  19. Watanabe, M., Hasegawa, A., Hara, K., Gonzalez, M., Cuadrado, J.: Three dimensional flutter analysis of a rectangular sheet based on the unsteady lifting surface theory and wind-tunnel experiments. Trans. JSME (in Japanese) (2016). https://doi.org/10.1299/transjsme.16-00170

    Article  Google Scholar 

  20. Ueda, T., Dowell, E.H.: A new solution method for lifting surface in subsonic flow. AIAA. 20(3), 348–355 (1982). https://doi.org/10.2514/3.7916

    Article  MATH  Google Scholar 

  21. Ueda, T.: Lifting surface calculations in the Laplace domain with application to root loci. AIAA. 25(5), 698–704 (1987). https://doi.org/10.2514/3.9685

    Article  Google Scholar 

  22. Tang, L., Paidoussis, M.P.: On the instability and post-critical behaviour of two-dimensional cantilevered plates in axial flow. J. Sound Vib. 305, 97–115 (2007). https://doi.org/10.1016/j.jsv.2007.03.042

    Article  Google Scholar 

  23. Tang, L., Paidoussis, M.P.: The influence of the wake on the stability of cantilevered plates in axial flow. J. Sound Vib. 310, 512–526 (2008). https://doi.org/10.1016/j.jsv.2007.09.025

    Article  Google Scholar 

  24. Chen, M., Jia, L., Wu, Y., Yin, X., Ma, Y.: Bifurcation and chaos of a flag in an inviscid flow. J. Fluids Struct. 45, 124–137 (2014). https://doi.org/10.1016/j.jfluidstructs.2013.11.020

    Article  Google Scholar 

  25. Datta, S.K., Gottenberg, W.G.: Instability of an elastic strip hanging in an airstream. ASME J. Appl. Mech. 42(1), 195–198 (1975). https://doi.org/10.1115/1.3423515

    Article  MATH  Google Scholar 

  26. Eloy, C., Lagrange, R., Souilliez, C., Schouveiler, L.: Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97–106 (2008). https://doi.org/10.1017/S002211200800284X

    Article  MathSciNet  MATH  Google Scholar 

  27. Morris-Thomas, M.T., Steen, S.: Experiments on the stability and drag of a flexible sheet under in-plane tension in uniform flow. J. Fluids Struct. 25(5), 815–830 (2009). https://doi.org/10.1016/j.jfluidstructs.2009.02.003

    Article  Google Scholar 

  28. Shelly, M., Vandenberghe, N., Zhang, J.: Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett. 94, 094302 (2005). https://doi.org/10.1103/PhysRevLett.94.094302

    Article  Google Scholar 

  29. Schouveiler, L., Eloy, C., Le Gal, P.: Flow-induced vibrations of high mass ratio flexible filaments freely hanging in a flow. Phys. Fluids 17(4), 047104 (2005). https://doi.org/10.1063/1.1878292

    Article  MATH  Google Scholar 

  30. Schouveiler, L., Eloy, C.: Coupled flutter of parallel plates. Phys. Fluids 21(8), 081703 (2009). https://doi.org/10.1063/1.3204672

    Article  MATH  Google Scholar 

  31. Souilliez, C., Schouveiler, L., Eloy, C.: Flutter modes of a flexible plate in an air flow. J. Vis. 9, 242 (2006). https://doi.org/10.1007/BF03181667

    Article  Google Scholar 

  32. Taneda, S.: Waving motion of flags. J. Phys. Soc. Jpn. 24(2), 392–401 (1968). https://doi.org/10.1143/JPSJ.24.392

    Article  Google Scholar 

  33. Tang, D.M., Yamamoto, H., Dowell, E.H.: Flutter and limit cycle oscillation of two-dimensional panels in three-dimensional axial flow. J. Fluids Struct. 17(2), 225–242 (2003). https://doi.org/10.1016/S0889-9746(02)00121-4

    Article  Google Scholar 

  34. Virot, E., Amandolese, X., Hémon, P.: Fluttering flags: an experimental study of fluid forces. J. Fluids Struct. 43, 385–401 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.09.012

    Article  Google Scholar 

  35. Zhao, W., Paidoussis, M.P., Tang, L., Liu, M., Jiang, J.: Theoretical and experimental investigations of the dynamics of cantilevered flexible plates subjected to axial flow. J. Sound Vib. 331(3), 575–587 (2012). https://doi.org/10.1016/j.jsv.2011.08.014

    Article  Google Scholar 

  36. Rao, S.S.: Mechanical vibrations. Sixth edition in SI units, pp. 767–769. Pearson, London (2018)

    Google Scholar 

  37. Semler, C., Alighanbari, H., Paidoussis, M.P.: A physical explanation of the destabilizing effect of damping. ASME J. Appl. Mech. 65, 642–648 (1998). https://doi.org/10.1115/1.2789106

    Article  Google Scholar 

  38. Küssner, H. G.: General Airfoil Theory. NACA Technical Report No. 979 (1941)

  39. Paidoussis, M.P.: Dynamics of tubular cantilevers conveying fluid. J. Mech. Eng. Sci. 12(2), 85–103 (1970). https://doi.org/10.1243/JMES_JOUR_1970_012_017_02

    Article  Google Scholar 

  40. Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Elsevier, New York (2014)

    Google Scholar 

  41. Tang, L., Paidoussis, M.P., Jiang, J.: Cantilevered plates in axial flow: energy transfer and the concept of flutter-mill. J. Sound Vib. 326, 263–276 (2009). https://doi.org/10.1016/j.jsv.2009.04.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Associate Prof. Kensuke Hara (Yokohama National University) and Dr. Masakazu Takeda (Aoyama Gakuin University) for their helpful advice. The authors also acknowledge reviewers for their thoughtful suggestions. We would like to thank Editage (www.editage.com) for English language editing.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

K. Hiroaki contributed to conceptualization, methodology, visualization, investigation, software, validation, writing–original draft; M. Watanabe contributed to methodology, investigation, software, writing–review and editing.

Corresponding author

Correspondence to K. Hiroaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiroaki, K., Watanabe, M. Theoretical study on the instability mechanism of flutter generated on a cantilevered flexible plate in three-dimensional uniform flow. Acta Mech 232, 2897–2917 (2021). https://doi.org/10.1007/s00707-021-02979-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02979-6

Navigation