Skip to main content
Log in

A non-intrusive stochastic phase field method for crack propagation in functionally graded materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work presents a framework to study the quasi-static brittle fracture in functionally graded materials with random material properties using a non-intrusive phase field method. The model accounts for variation in the material and fracture properties. Further, the effective Young’s modulus, the gradient index and the fracture properties of the constituent materials are considered as random input variables. The output randomness is represented by polynomial chaos expansion. Two-dimensional benchmark numerical examples are presented to demonstrate the benefits of the non-intrusive approach to study fracture characteristics. The influence of the randomness in the material properties on the peak load carrying capacity is considered as a primary quantity of interest in this study. A systematic parametric study is carried out to bring out the sensitivity of the input randomness on the stochastic output response using Sobol indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bhardwaj, G., Singh, I.V., Mishra, B.K.: Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Comput. Methods Appl. Mech. Eng. 284, 186–229 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Suresh, Subra, Mortensen, Andreas: Fundamentals of Functionally Graded Materials. The Institute of Materials, London (1998)

    Google Scholar 

  3. Ziane, N., Meftah, S.A., Ruta, G., Tounsi, A.: Thermal effects on the instabilities of porous FGM box beams. Eng. Struct. 134, 150–158 (2017)

    Article  Google Scholar 

  4. Hassanin, H., Jiang, K.: Functionally graded microceramic components. Microelectron. Eng. 87(5–8), 1610–1613 (2010)

    Article  Google Scholar 

  5. Enab, Tawakol A.: A comparative study of the performance of metallic and FGM tibia tray components in total knee replacement joints. Comput. Mater. Sci. 53(1), 94–100 (2012)

    Article  Google Scholar 

  6. Kumar, S., Reddy, K.M., Kumar, A., Devi, G.R.: Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerosp. Sci. Technol. 26(1), 185–191 (2013)

    Article  Google Scholar 

  7. Carpinteri, Alberto, Paggi, Marco, Pugno, Nicola: An analytical approach for fracture and fatigue in functionally graded materials. Int. J. Fract. 141(3–4), 535–547 (2006)

    Article  MATH  Google Scholar 

  8. Petrova, Vera, Schmauder, Siegfried: Fgm/homogeneous bimaterials with systems of cracks under thermo-mechanical loading: Analysis by fracture criteria. Eng. Fract. Mech. 130, 12–20 (2014)

    Article  Google Scholar 

  9. Kim, J.-H., Paulino, G.H.: Simulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading. Int. J. Mech. Mater. Des. 1(1), 63–94 (2004)

    Article  Google Scholar 

  10. Comi, Claudia, Mariani, Stefano: Extended finite element simulation of quasi-brittle fracture in functionally graded materials. Comput. Methods Appl. Mech. Eng. 196(41–44), 4013–4026 (2007)

    Article  MATH  Google Scholar 

  11. Bayesteh, Hamid, Mohammadi, Soheil: XFEM fracture analysis of orthotropic functionally graded materials. Compos. Part B Eng. 44(1), 8–25 (2013)

    Article  Google Scholar 

  12. Martínez-Pañeda, E., Gallego, R.: Numerical analysis of quasi-static fracture in functionally graded materials. Int. J. Mech. Mater. Des. 11(4), 405–424 (2015)

    Article  Google Scholar 

  13. Ooi, E.T., Natarajan, S., Song, C., Tin-Loi, F.: Crack propagation modelling in functionally graded materials using scaled boundary polygons. Int. J. Fract. 192(1), 87–105 (2015)

    Article  Google Scholar 

  14. Jin, Z.H., Paulino, G.H., Dodds Jr., R.H.: Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng. Fract. Mech. 70(14), 1885–1912 (2003)

    Article  Google Scholar 

  15. Kandula, S.S., Abanto-Bueno, J., Geubelle, P.H., Lambros, J.: Cohesive modeling of dynamic fracture in functionally graded materials. Int. J. Fract. 132(3), 275–296 (2005)

    Article  MATH  Google Scholar 

  16. Martinez-Paneda, E., Natarajan, S.: Adaptive phase field modelling of crack propagation in orthotropic functionally graded materials. Def. Technol. 17(1), 185–195 (2021)

    Article  Google Scholar 

  17. Yue, Z.Q., Xiao, H.T., Tham, L.G.: Boundary element analysis of crack problems in functionally graded materials. Int. J. Solids Struct. 40(13–14), 3273–3291 (2003)

    Article  MATH  Google Scholar 

  18. Gao, X.W., Zhang, C., Sladek, J., Sladek, V.: Fracture analysis of functionally graded materials by a BEM. Compos. Sci. Technol. 68(5), 1209–1215 (2008)

    Article  Google Scholar 

  19. Ekhlakov, A., Khay, O., Ch Zhang, J., Sladek, V.Sladek, Gao, X.W.: Thermoelastic crack analysis in functionally graded materials and structures by a BEM. Fatigue Fract. Eng. Mater. Struct. 35(8), 742–766 (2012)

    Article  Google Scholar 

  20. Sladek, Jan, Sladek, Vladimir, Zhang, Chuanzeng, Tan, Choon-Lai: Evaluation of fracture parameters for crack problems in FGM by a meshless method. J. Theor. Appl. Mech. 44(3), 603–636 (2006)

    Google Scholar 

  21. Kim, J.H., Paulino, G.H.: T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Comput. Methods Appl. Mech. Eng. 192(11–12), 1463–1494 (2003)

    Article  MATH  Google Scholar 

  22. Goli, E., Kazemi, M.T.: XFEM modeling of fracture mechanics in transversely isotropic FGMs via interaction integral method. Proc. Mater. Sci. 3, 1257–1262 (2014)

    Article  Google Scholar 

  23. Shojaee, S., Daneshmand, A.: Crack analysis in media with orthotropic functionally graded materials using extended isogeometric analysis. Eng. Fract. Mech. 147, 203–227 (2015)

    Article  Google Scholar 

  24. Ooi, E.T., Natarajan, S., Song, C., Tin-Loi, F.: Crack propagation modelling in functionally graded materials using scaled boundary polygons. Int. J. Fract. 192(1), 87–105 (2015)

    Article  Google Scholar 

  25. Chiong, Irene, Ooi, Ean Tat, Song, Chongmin, Tin-Loi, Francis: Scaled boundary polygons with application to fracture analysis of functionally graded materials. Int. J. Num. Methods Eng. 98(8), 562–589 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ooi, ET, Chiong, I, Song, C.: Evaluation of stress intensity factors on cracked functionally graded materials using polygons modelled by the scaled boundary finite element method. American Environmentalism: Philosophy, History, and Public Policy, page 201, (2013)

  27. Chiong, Irene, Ooi, Ean Tat, Song, Chongmin, Tin-Loi, Francis.: Computation of dynamic stress intensity factors in cracked functionally graded materials using scaled boundary polygons. Engineering Fracture Mechanics, 131:210–231, (2014)

  28. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. Springer, Netherlands (2008)

    Book  MATH  Google Scholar 

  30. Chen, Long Qing, Khachaturyan, A.G.: Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Metallurgica et Materialia 39(11), 2533–2551 (1991)

    Article  Google Scholar 

  31. Wu, J.Y., Nguyen, V.P., Nguyen, C.T., Sutula, D., Bordas, S., Sinaie, S.: Phase field modeling of fracture. Adv. Appl. Mech. 52, (2018)

  32. Raina, Arun, Miehe, Christian: A phase-field model for fracture in biological tissues. Biomech. Modeling Mechanobiol. 15(3), 479–496 (2016)

    Article  Google Scholar 

  33. Shahba, Ahmad, Ghosh, Somnath: Coupled phase field finite element model for crack propagation in elastic polycrystalline microstructures. Int.J. Fract. 219(1), 31–64 (2019)

    Article  Google Scholar 

  34. Lo, Y.S., Borden, M.J., Ravi-Chandar, K., Landis, C.M.: A phase-field model for fatigue crack growth. J. Mech. Phys. Solids 132, 103684 (2019)

    Article  MathSciNet  Google Scholar 

  35. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schlüter, Alexander, Kuhn, Charlotte, Müller, Ralf, Tomut, Marilena, Trautmann, Christina, Weick, Helmut, Plate, Carolin: Phase field modelling of dynamic thermal fracture in the context of irradiation damage. Contin. Mech. Thermodyn. 29(4), 977–988 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Natarajan, S., Annabattula, R.K., Ratna, K., Martínez-Pañeda, E.: Phase field modelling of crack propagation in functionally graded materials. Compos. Part B Eng. 169, 239–248 (2019)

    Article  Google Scholar 

  38. Doan, Duc Hong, Bui, Tinh Quoc, Duc, Nguyen Dinh, Fushinobu, Kazuyoshi: Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy. Compos. Part B Eng. 99, 266–276 (2016)

    Article  Google Scholar 

  39. Pramod, Aladurthi L. N., Hirshikesh, Natarajan, Sundararajan, Ooi, Ean Tat.: Application of adaptive phase-field scaled boundary finite element method for functionally graded materials. International Journal of Computational Methods, In Press:2041007, (2020)

  40. Zhang, P., Yao, W., Hu, X., Bui, T.Q.: 3D micromechanical progressive failure simulation for fiber-reinforced composites. Compos. Struct. 249, 112534 (2020)

    Article  Google Scholar 

  41. Wilson, Zachary A, Borden, Michael J, Landis, Chad M: A phase-field model for fracture in piezoelectric ceramics. Int. J. Fract. 183(2), 135–153 (2013)

    Article  Google Scholar 

  42. Spetz, Alex, Denzer, Ralf, Tudisco, Erika, Dahlblom, Ola: Phase-field fracture modelling of crack nucleation and propagation in porous rock. Int. J. Fract. 224(1), 31–46 (2020)

    Article  Google Scholar 

  43. Pham, K.H., Ravi-Chandar, K., Landis, C.M.: Experimental validation of a phase-field model for fracture. Int. J. Fract. 205, 83–101 (2017)

    Article  Google Scholar 

  44. Chakraborty, Arindam, Rahman, Sharif: Stochastic multiscale models for fracture analysis of functionally graded materials. Eng. Fract. Mech. 75(8), 2062–2086 (2008)

    Article  Google Scholar 

  45. Guo, Licheng, Wang, Zhihai, Noda, Naotake: A fracture mechanics model for a crack problem of functionally graded materials with stochastic mechanical properties. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2146), 2939–2961 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Nguyen, Tam H., Song, Junho, Paulino, Glaucio H.: Probabilistic fracture analysis of functionally graded materials—part ii: Implementation and numerical examples. In AIP Conference Proceedings, volume 973, pages 159–164. American Institute of Physics, (2008)

  47. Pan, Haizhu, Song, Tianshu: Stochastic investigation of the facture problem in functionally graded materials with uncertain mechanical properties and an arbitrarily oriented crack. Theor. Appl. Fract. Mech. 91, 155–165 (2017)

    Article  Google Scholar 

  48. Lal, Achchhe, Palekar, Shailesh P, Mulani, Sameer B, Kapania, Rakesh K: Stochastic extended finite element implementation for fracture analysis of laminated composite plate with a central crack. Aerosp. Sci. Technol. 60, 131–151 (2017)

    Article  Google Scholar 

  49. Lal, Achchhe, Mulani, Sameer B, Kapania, Rakesh K: Stochastic fracture response and crack growth analysis of laminated composite edge crack beams using extended finite element method. Int. J. Appl. Mech. 9(04), 1750061 (2017)

    Article  Google Scholar 

  50. Wiener, Norbert: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ghanem, Roger, Spanos, Pol D.: Polynomial chaos in stochastic finite elements. (1990)

  52. Onorato, G., Loeven, GJA., Ghorbaniasl, G, Bijl, Hester, Lacor, C.: Comparison of intrusive and non-intrusive polynomial chaos methods for CFD applications in aeronautics. In V European Conference on Computational Fluid Dynamics ECCOMAS, Lisbon, Portugal, pages 14–17, (2010)

  53. Dinescu, Cristian, Smirnov, Sergey, Hirsch, Charles, Lacor, Chris: Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions. Int. J. Eng. Syst. Modelling Simul. 2(1–2), 87–98 (2010)

    Article  Google Scholar 

  54. Xiu, Dongbin, Karniadakis, George Em: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Najm, Habib N: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Xiu, Dongbin, Karniadakis, George Em: A new stochastic approach to transient heat conduction modeling with uncertainty. Int. J. Heat Mass Transf. 46(24), 4681–4693 (2003)

    Article  MATH  Google Scholar 

  57. Kersaudy, Pierric, Mostarshedi, Shermila, Sudret, Bruno, Picon, Odile, Wiart, Joe: Stochastic analysis of scattered field by building facades using polynomial chaos. IEEE Trans. Antennas Propag. 62(12), 6382–6393 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xiu, Dongbin, Karniadakis, George Em: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sudret, Bruno: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  60. Kabir, Muhammad, Khazaka, Roni, Talukder, Md AH, Ahadi, Majid, Chobanyan, Elene, Smull, Aaron, Roy, Sourajeet, Notaros, Branislav M.: Non-intrusive pseudo spectral approach for stochastic macromodeling of em systems using deterministic full-wave solvers. In 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems, pages 235–238. IEEE, (2014)

  61. Hosder, Serhat, Walters, Robert W, Balch, Michael: Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics. AIAA J. 48(12), 2721–2730 (2010)

    Article  Google Scholar 

  62. Eldred, Michael, Burkardt, John.: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, page 976, (2009)

  63. Hirshikesh, Natarajan, S., Annabattula R .K: A FEniCS implementation of the phase field method for quasi-static brittle fracture. Front. Struct. Civ. Eng. 13(2), 380–396 (2019)

    Article  Google Scholar 

  64. Molnar, G., Gravouil, A.: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem. Anal. Des. 130(March), 27–38 (2017)

    Article  Google Scholar 

  65. Miehe, C., Welshinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Num. Methods Eng. 83, 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Shaima M Dsouza and Hirshikesh thank Ministry of Human Resource Development (MHRD), Government of India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundararajan Natarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dsouza, S.M., Hirshikesh, Mathew, T.V. et al. A non-intrusive stochastic phase field method for crack propagation in functionally graded materials. Acta Mech 232, 2555–2574 (2021). https://doi.org/10.1007/s00707-021-02956-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02956-z

Keywords

Navigation